对于32位字长的机器,大约超过20亿,用int类型就无法表示了,我们可以选择int64类型,但无论怎样扩展,固定的整数类型总是有表达的极限!如果对超级大整数进行精确运算呢?一个简单的办法是:仅仅使用现有类型,但是把大整数的运算化解为若干小整数的运算,即所谓:“分块法”。
如图【1.jpg】表示了分块乘法的原理。可以把大数分成多段(此处为2段)小数,然后用小数的多次运算组合表示一个大数。可以根据int的承载能力规定小块的大小,比如要把int分成2段,则小块可取10000为上限值。注意,小块在进行纵向累加后,需要进行进位校正。
以下代码示意了分块乘法的原理(乘数、被乘数都分为2段)。
void bigmul(int x,int y,int r[]) { int base = 10000; int x2 = x / base; int x1 = x % base; int y2 = y / base; int y1 = y % base; int n1 = x1 * y1; int n2 = x1 * y2; int n3 = x2 * y1; int n4 = x2 * y2; r[3] = n1 % base; r[2] = n1 / base + n2 % base + n3 % base; r[1] = ____________________________________________; // 填空 r[0] = n4 / base; r[1] += _______________________; // 填空 r[2] = r[2] % base; r[0] += r[1] / base; r[1] = r[1] % base; } int main(int argc,char* argv[]) { int x[] = {0,0}; bigmul(87654321,12345678,x); printf("%d%d%d%d\n",x[0],x[1],x[2],x[3]); return 0; }
答案 :
(1)n2/base+n3/base+n4%base
(2)r[2]/base
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。