微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

numpy:将扫描数据的单个二维数组重塑为 3 个二维数组

如何解决numpy:将扫描数据的单个二维数组重塑为 3 个二维数组

我有一个以下形式的数组:

x_1    y_1    z_1,1
x_1    y_2    z_1,2
x_1    y_3    z_1,3
...    ...     ...
x_1    y_n    z_1,m
x_2    y_1    z_2,1
x_2    y_2    z_2,2
x_2    y_3    z_2,3
...    ...     ...
x_2    y_m    z_2,m
...    ...     ...
x_n    y_m    z_n,m

这是扫描数据,因此 x 和 y 坐标以及该坐标处的测量值 (z)。我想将其绘制为等高线图,为此需要类似于生成我的 np.meshgrid() 的数组。所以我需要以下形式的三个数组(它们都是形状:m 行 x n 列):

X = [x_1  x_2  x_3  ...  x_n
     x_1  x_2  x_3  ...  x_n
     ...                  .
          ...             .
               ...        .
     x_1  x_2  x_3  ...  x_n]


Y = [y_1  y_1  y_1  ...  y_1
     y_2  y_2  y_2  ...  y_2
     ...                  .
          ...             .
               ...        .
     y_m  y_m  y_m  ...  y_m]


Z = [z_1,1  z_2,1  z_3,1  ...  z_n,1
     z_1,2  z_2,2  z_3,2  ...  z_n,2
      ...                        .
             ...                 .
                    ...          .
     z_1,m  z_2,m  z_3,m  ...  z_n,m]

注意事项:

  • n 和 m 不一定相等,并且可以在扫描之间变化。
  • x 和 y 步中的间距不一定是恒定的

实现这一点的最pythonic 的方法是什么? 是否有一种简单的方法可以使用重塑?我可以使用 for 循环来完成,跟踪当前的 x 和 y 坐标,并在它们发生变化时移动到新的列/行,以将值插入到数组中。但这似乎非常乏味和缓慢...

解决方法

TL;DR
data.T.reshape(3,m,n).transpose((0,2,1))


  1. 复制您的数据结构
In [60]: m,n = 3,5
...: x,y,z = (
...:     np.array(list(range(m))*n).reshape(n,m).T.flatten(),...:      np.array(list(range(n))*m),...:      np.arange(n*m))
...: a = np.array((x,z)).T
...: print(a)
[[ 0  0  0]
 [ 0  1  1]
 [ 0  2  2]
 [ 0  3  3]
 [ 0  4  4]
 [ 1  0  5]
 [ 1  1  6]
 [ 1  2  7]
 [ 1  3  8]
 [ 1  4  9]
 [ 2  0 10]
 [ 2  1 11]
 [ 2  2 12]
 [ 2  3 13]
 [ 2  4 14]]
  1. 让我们看看meshgrid想要做什么
In [62]: np.meshgrid(range(m),range(n))
Out[62]: 
[array([[0,1,2],[0,2]]),array([[0,0],[1,1],[2,[3,3,3],[4,4,4]])]
  1. 解决方案是
In [63]: a.T.reshape(3,1))
Out[63]: 
array([[[ 0,[ 0,2]],[[ 0,[ 1,[ 2,[ 3,[ 4,4]],5,10],6,11],7,12],8,13],9,14]]])

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。