微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Filnk简介

Filnk简介

1. flink和spark的区别

2. 流处理和批处理

3. 无界流和有界流

4. 流处理和批处理

  • 流处理

  • 批处理

5. 离线计算和实时计算的区别

6. 实时计算面临的挑战

1.数据处理唯一性(如何保证数据只处理一次?至少一次?最多一次?)

2.数据处理的及时性(采集的实时数据量太大的话可能会导致短时间内处理不过来,如何保证数据能够及时的处理,不出现数据堆积?)

3.数据处理层和存储层的可扩展性(如何根据采集的实时数据量的大小提供动态扩缩容?)

4.数据处理层和存储层的容错性(如何保证数据处理层和存储层高可用,出现故障时数据处理层和存储层服务依旧可用?)

  • 支持高吞吐、低延迟、高性能的流处理
  • 支持带有事件时间的窗口(Window)操作
  • 支持有状态计算的Exactly-once语义
  • 支持高度灵活的窗口(Window)操作,支持基于time、count、session,以及data-driven的窗口操作
  • 支持具有反压功能的持续流模型
  • 支持基于轻量级分布式快照(Snapshot)实现的容错
  • 一个运行时同时支持Batch on Streaming处理和Streaming处理
  • Flink在JVM内部实现了自己的内存管理,避免了出现oom
  • 支持迭代计算
  • 支持程序自动优化:避免特定情况下Shuffle、排序等昂贵操作,中间结果有必要进行缓存

Flink技术栈

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐