微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Flink基石----Window

Flink基石----Window

目录

Flink中的Window包含三部分:

1、Time Window----时间窗口

2、Session Window----会话窗口(待没有数据的时候开始计算)

3、Count Window----统计窗口(每n条数据计算一次)

image

一、Time Window----时间窗口

时间窗口包含四部分:

TumblingProcessingTimeWindows:滚动的处理时间窗口
TumblingEventTimeWindows:滚动的事件时间窗口(需要设置时间字段和水位线)
SlidingProcessingTimeWindows: 滑动的处理时间窗口(滑动窗口需要指定窗口大小和滑动时间)
SlidingEventTimeWindows:滑动的事件时间窗口(滑动窗口需要指定窗口大小和滑动时间)
滚动:两个时间窗口之间没有交叉;  滑动:两个时间窗口之间有交叉
1、TumblingProcessingTimeWindows----滚动的处理时间窗口
package com.shujia.flink.window

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time

object Demo1TimeWindow {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //读取socket数据
    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    //拆分、转成kv格式
    val kvDS: DataStream[(String, Int)] = linesDS.flatMap(_.split(",")).map((_, 1))

      /**
      * 滚动的处理时间窗口
      * .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
      * 简写:
      *    .timeWindow(Time.seconds(5))
      */
    //将单词分组,添加时间、并统计数量,打印
    kvDS.keyBy(_._1)
      .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
      .sum(1)
      .print()

    env.execute()
  }
}
2、TumblingEventTimeWindows----滚动的事件时间窗口

滚动的事件时间窗口:需要设置时间字段和水位线

package com.shujia.flink.window

import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.{TumblingEventTimeWindows, TumblingProcessingTimeWindows}
import org.apache.flink.streaming.api.windowing.time.Time

object Demo1TimeWindow {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //读取socket数据
    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    //拆分、转成kv格式
    val kvDS: DataStream[(String, Int)] = linesDS.flatMap(_.split(",")).map((_, 1))

    //设置时间字段, 水位线认等于最新数据的时间戳,水位线只增加不减少
    val assDS: DataStream[(String, Int)] = kvDS.assignTimestampsAndWatermarks(
      //执行水位线前移的时间
      new BoundedOutOfOrdernessTimestampExtractor[(String, Int)](Time.seconds(5)) {
        //指定时间戳字段
        override def extractTimestamp(element: (String, Int)): Int = element._2
      }
    )

    //将单词分组,添加时间、并统计数量,打印
    kvDS.keyBy(_._1)
      .window(TumblingEventTimeWindows.of(Time.seconds(5)))//上面那一行是本行的简写
      .sum(1)
      .print()

    env.execute()

  }
}
3、SlidingProcessingTimeWindows:----滑动的处理时间窗口

滑动窗口需要指定窗口大小和滑动时间

package com.shujia.flink.window

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners._
import org.apache.flink.streaming.api.windowing.time.Time

object Demo1TimeWindow {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //读取socket数据
    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    //拆分、转成kv格式
    val kvDS: DataStream[(String, Int)] = linesDS.flatMap(_.split(",")).map((_, 1))

    //将单词分组,添加时间、并统计数量,打印
    kvDS.keyBy(_._1)
      .window(SlidingProcessingTimeWindows.of(Time.seconds(15), Time.seconds(5)))
      .sum(1)
      .print()

    env.execute()
  }
}

二、Session Window----会话窗口

待没有数据的时候开始计算,将前面的数据放到一个窗口中进行计算,每一个key是独立计时的

会话窗口包含两种:

ProcessingTimeSessionWindows: 处理时间的会话窗口
EventTimeSessionWindows: 事件时间的会话窗口(需要设置时间字段和水位线)
1、ProcessingTimeSessionWindows---- 处理时间的会话窗口
package com.shujia.flink.window

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners._
import org.apache.flink.streaming.api.windowing.time.Time

object Demo1TimeWindow {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //读取socket数据
    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    //拆分、转成kv格式
    val kvDS: DataStream[(String, Int)] = linesDS.flatMap(_.split(",")).map((_, 1))

    //将单词分组,添加时间、并统计数量,打印
    kvDS.keyBy(_._1)
      .window(ProcessingTimeSessionWindows.withGap(Time.seconds(5)))
      //当间隔5秒后,没有数据传入,那么开始计算
      .sum(1)
      .print()

    env.execute()
  }
}
2、EventTimeSessionWindows: 事件时间的会话窗口

需要设置时间字段和水位线

package com.shujia.flink.window

import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.{EventTimeSessionWindows, ProcessingTimeSessionWindows}
import org.apache.flink.streaming.api.windowing.time.Time

object Demo2SessionWindow {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //当数据量比较小时,将并行度设置为1
    env.setParallelism(1)
	//设置时间模式为事件时间
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    val eventDS: DataStream[(String, Long)] = linesDS.map(line => {
      val split: Array[String] = line.split(",")
      (split(0), split(1).toLong)
    })

    //设置水位线和时间字段
    val assDS: DataStream[(String, Long)] = eventDS.assignTimestampsAndWatermarks(
      //执行水位线前移的时间
      new BoundedOutOfOrdernessTimestampExtractor[(String, Long)](Time.seconds(5)) {
        //指定时间戳字段
        override def extractTimestamp(element: (String, Long)): Long = element._2
      }
    )

    assDS
      .map(kv => (kv._1, 1))
      .keyBy(_._1)
      .window(EventTimeSessionWindows.withGap(Time.seconds(5)))
      .sum(1)
      .print()

    env.execute()
  }
}

三、Count Window----统计窗口

package com.shujia.flink.window

import org.apache.flink.streaming.api.scala._

object Demo3Countwindow {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment


    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)

    val kvDS: DataStream[(String, Int)] = linesDS.flatMap(_.split(",")).map((_, 1))

    /**
      * 滚动的统计窗口
      * 滑动的统计窗口
      *
      */
    kvDS
      .keyBy(_._1)
      .countwindow(10)//滚动的统计窗口---每隔10条数据计算一次
      .countwindow(10, 2) //每隔两条数据将最近的10条数据放到一个窗口中进行计算
      .sum(1)
      .print()

    env.execute()
  }
}

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐