微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Flink学习笔记——Execution Mode

Flink有3中运行模式,分别是STREAMING,BATCH和AUTOMATIC

Ref

https://ci.apache.org/projects/flink/flink-docs-release-1.12/zh/dev/datastream_execution_mode.html

1.STREAMING运行模式 是DataStream认的运行模式

2.BATCH运行模式 也可以在DataStream API上运行

3.AUTOMATIC运行模式 是让系统根据source类型自动选择运行模式

可以通过命令行来配置运行模式

bin/flink run -Dexecution.runtime-mode=BATCH examples/streaming/WordCount.jar

也可以在代码中配置

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.BATCH);

 

STREAMING运行模式中,Flink使用StateBackend来控制状态存储和checkpoint的工作,RocksDBStateBackend支持增量Checkpoint,其他2个不支持

BATCH运行模式中,statebackend是被忽略的,batch模式不支持checkpoint

Flink支持3种StateBackend,其中

1.MemoryStateBackend
2.FsstateBackend
3.RocksDBStateBackend

StateBackend可以参考

【flink】flink状态后端配置-设置State Backend

 

STREAMING运行模式中,flink使用checkpoint来进行容错,checkpoint参考

https://ci.apache.org/projects/flink/flink-docs-release-1.12/zh/dev/stream/state/checkpointing.html

BATCH运行模式中,flink会回滚到到之前的stage,只有失败的task才会重启,这比从checkpoint重启所以的task要高效,所以建议如果任务能在BATCK运行模式下运行,就使用BATCH运行模式

 

broadcast State

1. STREAMING运行模式一个典型应用就是允许一个控制流接收一个rules,并将其广播到其他的stream中

2. BATCH运行模式不支持

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐