以下参数是在用户自己的MR应用程序中配置就可以生效(mapred-default.xm
配置参数 | 参数说明 |
mapreduce.map.memory.mb | 一个MapTask可使用的资源上限(单位:MB),默认为1024。如果MapTask实际使用的资源量超过该值,则会被强制杀死。 |
mapreduce.reduce.memory.mb | 一个ReduceTask可使用的资源上限(单位:MB),默认为1024。如果ReduceTask实际使用的资源量超过该值,则会被强制杀死。 |
mapreduce.map.cpu.vcores | |
mapreduce.reduce.cpu.vcores | |
每个Reduce去Map中取数据的并行数。默认值是5 | |
mapreduce.reduce.shuffle.merge.percent | Buffer中的数据达到多少比例开始写入磁盘。默认值0.66 |
mapreduce.reduce.shuffle.input.buffer.percent | Buffer大小占Reduce可用内存的比例。默认值0.7 |
mapreduce.reduce.input.buffer.percent | 指定多少比例的内存用来存放Buffer中的数据,默认值是0.0 |
应该在YARN启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)
配置参数 | 参数说明 |
yarn.scheduler.minimum-allocation-mb | 给应用程序Container分配的最小内存,默认值:1024 |
yarn.scheduler.maximum-allocation-mb | 给应用程序Container分配的最大内存,默认值:8192 |
yarn.scheduler.minimum-allocation-vcores | |
yarn.scheduler.maximum-allocation-vcores | |
yarn.nodemanager.resource.memory-mb | 给Containers分配的最大物理内存,默认值:8192 |
(3)Shuffle性能优化的关键参数,应在YARN启动之前就配置好(mapred-default.xml)
配置参数 | 参数说明 |
mapreduce.task.io.sort.mb | Shuffle的环形缓冲区大小,默认100m |
mapreduce.map.sort.spill.percent | 环形缓冲区溢出的阈值,默认80% |
2)容错相关参数(MapReduce性能优化)
配置参数 | 参数说明 |
mapreduce.map.maxattempts | |
mapreduce.reduce.maxattempts | |
mapreduce.task.timeout | Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个Task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该Task处于Block状态,可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000(10分钟)。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是:“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。 |
参数很多,自己也记不住。留在这里是怕以后不好找,可以随时翻一下。
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。