微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

HADOOP 优化4:MapReduce生产经验

8.1 MapReduce跑的慢的原因

MapReduce程序效率的瓶颈在于两点:

1)计算机性能

cpu、内存、磁盘、网络

2I/O操作优化

(1)数据倾斜

(2)Map运行时间太长,导致Reduce等待过久

(3)小文件过多

8.2 MapReduce常用调优参数

 

 

 

 

8.3 MapReduce数据倾斜问题

1)数据倾斜现象

数据频率倾斜——某一个区域的数据量要远远大于其他区域。

数据大小倾斜——部分记录的大小远远大于平均值。

2)减少数据倾斜的方法

(1)首先检查是否空值过多造成的数据倾斜

生产环境,可以直接过滤掉空值;如果想保留空值,就自定义分区,将空值加随机数打散。最后再二次聚合。

2)能在map阶段提前处理,最好先在Map阶段处理。如:Combiner、MapJoin

(3)设置多个reduce个数

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐