微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Hadoop面试题总结五- 优化

1、MapReduce跑得慢的原因?

Mapreduce 程序效率的瓶颈在于两点:

1)计算机性能

cpu、内存、磁盘健康、网络

2)I/O 操作优化

(1)数据倾斜

(2)map和reduce数设置不合理

(3)reduce等待过久

(4)小文件过多

(5)大量的不可分块的超大文件

(6)spill次数过多

(7)merge次数过多等

2、MapReduce优化方法

1)数据输入

(1)合并小文件:在执行mr任务前将小文件进行合并,大量的小文件会产生大量的map任务,增大map任务装载次数,而任务的装载比较耗时,从而导致mr运行较慢。

(2)采用ConbinFileInputFormat来作为输入,解决输入端大量小文件场景。

2)map阶段

(1)减少spill次数:通过调整io.sort.mb及sort.spill.percent参数值,增大触发spill的内存上限,减少spill次数,从而减少磁盘 IO。

(2)减少merge次数:通过调整io.sort.factor参数,增大merge的文件数目,减少merge的次数,从而缩短mr处理时间。

(3)在 map 之后先进行combine处理,减少I/O

3

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐