微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Hadoop概述

Hadoop是什么

@H_502_2@
  • Hadoop是一个由Apache基金会所开发的分布式系统基础架构
  • 主要解决,海量数据的存储和海量数据的分析计算问题。
  • 广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈
  • Hadoop发展历史

    Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优化升级查询引擎和索引引擎。2001年年底Lucene成为Apache基金会的一个子项目。对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。学习和模仿Google解决这些问题的办法:微型版Nutch。可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)

    • GFS—HDFS
    • Map-Reduceg—MR
    • BigTable—HBase

    2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能佩升。7)2005年Hadoop作为Lucene的子项目Nutch的一部分正式引入Apache基金会。2006年3月份,Map-Reduce和Nutch distributed File System(NDFS)分别被纳入到Hadoop项目中,Hadoop就此正式诞生,标志着大数据时代来临。

    名字来源于Doug Cutting儿子的玩具大象

    Hadoop三大发行版本

    Hadoop三大发行版本:Apache、Cloudera、Hortonworks

    Apache版本最原始(最基础)的版本,对于入门学习最好。2006

    Cloudera内部集成了很多大数据框架,对应产品CDH。2008

    Hortonworks文档较好,对应产品HDP

    Hortonworks现在已经被Cloudera公司收购,推出新的品牌CDP

    Apache Hadoop

    官网地址:http://hadoop.apache.org

    下载地址:https://hadoop.apache.org/releases.html

    Cloudera Hadoop

    官网地址:https://www.cloudera.com/downloads/cdhe

    下载地址:https://docs.cloudera.com/documentation/enterprise/6/release-notes/topics/rg_cdh_6_download.html

    @H_502_2@
  • 2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
  • 2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH、Cloudera Manager、Cloudera Support
  • CDH是Cloudera的Hadoop发行版,完全开源,比ApacheHadoop在兼容性,安全性,稳定性上有所增强。Cloudera的标价为每年每个节点10000美元。
  • Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。
  • Hortonworks Hadoop

    官网地址:https://hortonworks.com/products/data-center/hdp/

    下载地址:https://hortonworks.com/downloads/#data-platform

    @H_502_2@
  • 2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
  • 公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码
  • Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
  • 2018年Hortonworks目前已经被Cloudera公司收购。
  • Hadoop的优势

    高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。

    高扩展性:在集群间分配任务数据,可方便的扩展数以干计的节点

    高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。

    高容错性:能够自动将失败的任务重新分配。

    Hadoop组成

    在Hadoop1.x时代,Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,藕合性较大。

    在Hadoop2.x时代,增加了Yarn。Yarn只负责资源的调度,MapReduce只负责运算。

    Hadoop3.x在组成上没有变化。

    HDFS架构概述

    Hadoop distributed File System,简称HDFS,是一个分布式文件系统。

    @H_502_2@
  • NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性生成时间、副本数、文件权限),以及每个文件的块列表和块所在的Datanode等。
  • Datanode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份
  • YARN架构概述

    Yet Another Resource Negotiator,简称YARN,另一种资源协调者,是Hadoop的资源管理器。

    @H_502_2@
  • ResourceManager(RM):整个集群资源(内存、cpu等)的老大
  • NodeManager(NM):单个节点服务器资源老大
  • ApplicationMaster(AM):单个任务运行的老大
  • Container:容器,相当一台独立的服务器,里面封装了
  • 任务运行所需要的资源,如内存、cpu、磁盘、网络等。

    说明1:客户端可以有多个

    说明2:集群上可以运行多个ApplicationMaster

    说明3:每个NodeManager上可以有多个Container

    MapReduce架构概述

    MapReduce将计算过程分为两个阶段:Map和Reduce

    @H_502_2@
  • Map阶段并行处理输入数据
  • Reduce阶段对Map结果进行汇总
  • HDFS、Yarn、MapReduce三者关系

    大数据技术生态体系

    图中涉及的技术名词解释如下:

    @H_502_2@
  • Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库MysqL)间进行数据的传递,可以将一个关系型数据库(例如:MysqL,Oracle等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

  • Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;

  • Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;

  • Spark: Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

  • Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。

  • Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。

  • Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库

  • Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类sql语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

  • ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

  • 推荐系统架构图

    版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

    相关推荐