二话不说,先上代码与执行。
package com.yarn.wc;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Mywc {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
// Create a new Job
// 读取配置项
Job job = Job.getInstance(conf);
job.setJarByClass(Mywc.class);
// Specify varIoUs job-specific parameters
job.setJobName("myjob");
// job.setInputPath(new Path("in"));
// job.setoutputPath(new Path("out"));
Path inPath = new Path("/user/root/test.txt");
FileInputFormat.addInputPath(job, inPath);
Path outPath = new Path("/output2/wordcount");
if (outPath.getFileSystem(conf).exists(outPath))
outPath.getFileSystem(conf).delete(outPath, true);
FileOutputFormat.setoutputPath(job, outPath);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setoutputValueClass(IntWritable.class);
job.setReducerClass(MyReducer.class);
// Submit the job, then poll for progress until the job is complete
job.waitForCompletion(true);
}
}
实现MyMapper
package com.yarn.wc;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoretokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
实现MyReducer
package com.yarn.wc;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
打包成jar包,放到虚拟机上执行
hadoop jar wc.jar com.yarn.wc.Mywc
hdfs dfs -tail /output2/wordcount/part-r-00000
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。