微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

MapReduce Tutorial划重点

 

 

Mapper

Mapper的maps阶段将输入键值对经过计算得到中间结果键值对,框架会将中间结果按照key进行分组,然后传递给reducer以决定最终的输出用户可以通过Job.setGroupingComparatorClass(Class)来指定一个Comparator。

Mapper的输出会被排序,然后被分到不同的区,以供reducer处理。分区数与Reducer任务数相同。

如果指定了Combiner,那么会对中间结果进行本地聚集操作,这样可以减少从Mapper到Reducer传输的数量

 

Reducer

Reducer减少中间结果的值,这些中间结果的值共享一个key

Reducer有三个主要阶段:shuffle、sort、reduce

Shuffle:这个阶段的输入时Mapper的输出,而且是被排过序的。这个阶段会从所有Mapper的输出中抓取相关分区。

Sort:这个阶段会按照key分组。Shuffle和Sort阶段是同时进行的,在抓取maps输出的时候就已经进行了合并

Reduce:Reducer的输出是没有排序的

 

 

Partitioner

Partitioner控制Mapper中间结果的keys分区。认的Partitioner是HashPartitioner。

 

 

 

1、认的分区方式是哈希取模(HashPartitioner),它会用key的哈希值经过计算然后对reduce任务书取模,以决定中间结果在哪个分区。由于是先用key值取哈希,再进行模运算,那么key值相同的会进入到同一个分区。

2、Reducer任务的数量是根据公式算出来的。大概是<no. of nodes> * <no. of maximum containers per node> 的0.95倍到1.75倍之间。也就是说Reducer任务数决定了会有多少个分区。

3、分区是框架做的,中间结果的排序可以自定义

4、如果指定了Combiner则可以对中间结构进行本地聚集操作

5、Shuffle阶段是通过HTTP抓取相关的分区并且对分区中的key进行分组排序

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐