强引用_软引用_弱引用_虚引用
一. 强引用
-
当内存不足的时候,JVM开始垃圾回收,对于强引用的对象,就算是出现了OOM也不会对该对象进行回收,打死也不回收~!
-
当一个对象被强引用变量引用时,它处于可达状态,它是不可能被垃圾回收机制回收的,即使该对象以后永远都不会被用到,JVM也不会回收,因此强引用是造成Java内存泄漏的主要原因之一。
-
对于一个普通的对象,如果没有其它的引用关系,只要超过了引用的作用于或者显示地将相应(强)引用赋值为null,一般可以认为就是可以被垃圾收集的了(当然具体回收时机还是要看垃圾回收策略)
package com.xizi.Jvm;
public class StrongReferenceDemo {
public static void main(String[] args) {
// 这样定义的默认就是强应用
Object obj1 = new Object();
// 使用第二个引用,指向刚刚创建的Object对象
Object obj2 = obj1;
// 置空
obj1 = null;
// 垃圾回收
System.gc();
System.out.println(obj1);
System.out.println(obj2);
}
}
二. 软引用
①. SoftReference
-
软引用是一种相对弱化了一些的引用,需要用java.lang.ref.softReference类来实现,可以让对象豁免一些垃圾收集,对于只有软引用的对象来讲:
- 当系统内存充足时,它不会被回收
- 当系统内存不足时,它会被回收
-
软引用通常在对内存敏感的程序中,比如高速缓存就用到了软引用,内存够用 的时候就保留,不够用就回收
package com.xizi.Jvm;
import java.lang.ref.softReference;
public class SoftReferenceDemo {
// 内存够用的时候
public static void softRefMemoryEnough() {
// 创建一个强应用
Object o1 = new Object();
// 创建一个软引用
SoftReference<Object> softReference = new SoftReference<>(o1);
System.out.println(o1);
System.out.println(softReference.get());
o1 = null;
System.gc(); // 手动GC
System.out.println(o1);
System.out.println(softReference.get());
}
/**
* JVM配置,故意产生大对象并配置小的内存,让它的内存不够用了导致OOM,看软引用的回收情况
* -xms5m -Xmx5m -XX:+PrintGCDetails
*/
public static void softRefMemoryNoEnough() {
System.out.println("========================");
// 创建一个强应用
Object o1 = new Object();
// 创建一个软引用
SoftReference<Object> softReference = new SoftReference<>(o1);
System.out.println(o1);
System.out.println(softReference.get());
o1 = null;
// 模拟OOM自动GC
try {
// 创建30M的大对象
byte[] bytes = new byte[30 * 1024 * 1024];
} catch (Exception e) {
e.printstacktrace();
} finally {
System.out.println(o1);
System.out.println(softReference.get());
}
}
public static void main(String[] args) {
softRefMemoryEnough();
softRefMemoryNoEnough();
}
}
三. 弱引用
①. WeakReference
- 在进行GC操作后,弱引用的就会被回收
package com.xizi.Jvm;
import java.lang.ref.WeakReference;
// 弱引用
public class WeakReferenceDemo {
public static void main(String[] args) {
Object o1 = new Object();
WeakReference<Object> weakReference = new WeakReference<>(o1);
System.out.println(o1);
System.out.println(weakReference.get());
o1 = null;
System.gc();
System.out.println(o1);
System.out.println(weakReference.get());
}
}
②. WeakHashMap
package com.xizi.Jvm;
import java.util.HashMap;
import java.util.Map;
import java.util.WeakHashMap;
public class WeakHashMapDemo {
public static void main(String[] args) {
myHashMap();
System.out.println("==========");
myWeakHashMap();
}
private static void myHashMap() {
Map<Integer, String> map = new HashMap<>();
Integer key = new Integer(1);
String value = "HashMap";
map.put(key, value);
System.out.println(map);
key = null;
System.gc();
System.out.println(map);
}
private static void myWeakHashMap() {
Map<Integer, String> map = new WeakHashMap<>();
Integer key = new Integer(1);
String value = "WeakHashMap";
map.put(key, value);
System.out.println(map);
key = null;
// value = null;
System.gc();
System.out.println(map);
}
}
四. 虚引用
①. Phantomreference
- 虚引用又称为幽灵引用,需要java.lang.ref.Phantomreference 类来实现
- 顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。
- 如果一个对象持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收,它不能单独使用也不能通过它访问对象,虚引用必须和引用队列ReferenceQueue联合使用。
- 虚引用的主要作用和跟踪对象被垃圾回收的状态,仅仅是提供一种确保对象被finalize以后,做某些事情的机制。
- Phantomreference的get方法总是返回null,因此无法访问对象的引用对象。其意义在于说明一个对象已经进入finalization阶段,可以被gc回收,用来实现比finalization机制更灵活的回收操作
- 换句话说,设置虚引用关联的唯一目的,就是在这个对象被收集器回收的时候,收到一个系统通知或者后续添加进一步的处理,Java技术允许使用finalize()方法在垃圾收集器将对象从内存中清除出去之前,做必要的清理工作
②. 引用队列 ReferenceQueue
package com.xizi.Jvm;
import java.lang.ref.Phantomreference;
import java.lang.ref.ReferenceQueue;
import java.util.concurrent.TimeUnit;
// 虚引用 设置虚引用关联的唯一目的,就是在这个对象被收集器回收的时候,收到一个系统通知或者后续添加进一步的处理
public class PhantomreferenceDemo {
public static void main(String[] args) {
Object o1 = new Object();
// 创建引用队列
ReferenceQueue<Object> referenceQueue = new ReferenceQueue<>();
// 创建一个弱引用
// WeakReference<Object> weakReference = new WeakReference<>(o1, referenceQueue);
// 创建一个虚引用
// Phantomreference的get方法总是返回null,
Phantomreference<Object> weakReference = new Phantomreference<>(o1, referenceQueue);
System.out.println(o1); // java.lang.Object@5b2133b1
System.out.println(weakReference.get()); // null
// 取队列中的内容
System.out.println(referenceQueue.poll()); // null
System.out.println("======================");
o1 = null;
System.gc();
System.out.println("执行GC操作");
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printstacktrace();
}
System.out.println(o1); // null
System.out.println(weakReference.get()); // null
// 取队列中的内容
System.out.println(referenceQueue.poll()); // java.lang.ref.Phantomreference@72ea2f77
}
}
五. GCRoots和四大引用小总结
-
红色部分在垃圾回收之外,也就是强引用的
-
蓝色部分:属于软引用,在内存不够的时候,才回收
-
虚引用和弱引用:每次垃圾回收的时候,都会被干掉,但是它在干掉之前还会存在引用队列中,我们可以通过引用队列进行一些通知机制
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。