practicalAI 介绍
让你可以使用机器学习从数据中得到有价值见解。
Notebooks
Basics | Deep Learning | Advanced | Topics |
---|---|---|---|
 [Notebooks](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/00_Notebooks.ipynb) |  [PyTorch](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/07_PyTorch.ipynb) |  [Advanced RNNs](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/14_Advanced_RNNs.ipynb) |  [Computer Vision](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/15_Computer_Vision.ipynb) |
 [Python](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/01_Python.ipynb) |  [Multilayer Perceptrons](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/08_Multilayer_Perceptron.ipynb) |  Highway and Residual Networks |  Time Series Analysis |
 [NumPy](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/02_NumPy.ipynb) |  [Data & Models](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/09_Data_and_Models.ipynb) |  Autoencoders |  Topic Modeling |
 [Pandas](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/03_Pandas.ipynb) |  [Object- Oriented ML](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/10_Object_Oriented_ML.ipynb) |  Generative Adversarial Networks |  Recommendation Systems |
 [Linear Regression](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/04_Linear_Regression.ipynb) |  [Convolutional Neural Networks](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/11_Convolutional_Neural_Networks.ipynb) |  Transformer Networks |  Pretrained Language Modeling |
 [Logistic Regression](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/05_Logistic_Regression.ipynb) |  [Embeddings](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/12_Embeddings.ipynb) | Multitask Learning | |
 [Random Forests](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/06_Random_Forests.ipynb) |  [Recurrent Neural Networks](https://colab.research.google.com/github/GokuMohandas/practicalAI/blob/master/notebooks/13_Recurrent_Neural_Networks.ipynb) |  One-shot Learning | |
 Clustering |  Reinforcement Learning |
运行 notebooks
-
你可以在 Google Colab (建议的)或本地机器运行这些 notebook;
-
点击一项 notebook,把 notebook 的 URL 替换 https://github.com/ 成 https://colab.research.google.com/github/,或者使用该 Chrome扩展,一键完成操作;
-
登入你的 Google 账号;
practicalAI 官网
https://github.com/GokuMohandas/practicalAI
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。