大数据文摘出品
来源:thegradient
编译:张睿毅、武帅、钱天培
一个军方训练的神经网络声称可以分类图像中的坦克,但实际上,它只是学会了识别不同的亮度,因为一种类型的坦克仅出现在明亮的图片中,而另一种类型仅出现在较暗的图片中。
一个游戏AI在学会了在第一关的最后故意死去,而不是在更难的第二关的开局死去,因为这样可以得到更高的分数。
AI通过某种让人啼笑皆非的奇怪方式尝试骗过人类,并达到自己的目的,这样的案例之前文摘菌总结过一大批。
模型通过学习“错误”的信息来解决任务的问题已经存在很长时间了,并被称之为“聪明汉斯效应(CLever Hans effect)”。
该效应说的是,一匹名为汉斯的马看似能完成一些简单的智力任务,但实际上只是依赖于人们给出的无意识线索。
“聪明汉斯效应(CLever Hans effect)”在图像检测领域早已有之,但最近,在一篇最新论文中,来自台湾国立成功大学的Niven和Kao指出,这一现象也正在NLP领域大受关注。脱去它的影响后,BERT也许没有我们想得那么神奇。
先附上论文链接,再一起看看这个论证过程
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。