id, socialmedia
1, facebook
2, facebook
3, google
4, google
5, google
6, twitter
7, google
8, twitter
9, snapchat
10, twitter
11, facebook
我想在那时进行分组并分配一个group_id列然后取消组合(展开)回到各个记录.
id, socialmedia, groupId
1, facebook, 1
2, facebook, 1
3, google, 2
4, google, 2
5, google, 2
6, twitter, 3
7, google, 2
8, twitter, 3
9, snapchat, 4
10, twitter, 3
11, facebook, 1
我尝试了以下但最终使用’DataFrameGroupBy’对象不支持项目分配.
x['grpId'] = x.groupby('socialmedia')['socialmedia'].rank(method='dense').astype(int)
解决方法:
通过使用ngroup
df['grpId']=df.groupby(' socialmedia').ngroup().add(1)
df
Out[354]:
id socialmedia grpId
0 1 facebook 1
1 2 facebook 1
2 3 google 2
3 4 google 2
4 5 google 2
5 6 twitter 4
6 7 google 2
7 8 twitter 4
8 9 snapchat 3
9 10 twitter 4
10 11 facebook 1
或者pd.factorize和’categroy’
df['grpId']=pd.factorize(df[' socialmedia'])[0]+1
df
Out[358]:
id socialmedia grpId
0 1 facebook 1
1 2 facebook 1
2 3 google 2
3 4 google 2
4 5 google 2
5 6 twitter 3
6 7 google 2
7 8 twitter 3
8 9 snapchat 4
9 10 twitter 3
10 11 facebook 1
df['grpId']=df[' socialmedia'].astype('category').cat.codes.add(1)
df
Out[356]:
id socialmedia grpId
0 1 facebook 1
1 2 facebook 1
2 3 google 2
3 4 google 2
4 5 google 2
5 6 twitter 4
6 7 google 2
7 8 twitter 4
8 9 snapchat 3
9 10 twitter 4
10 11 facebook 1
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。