微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 将函数应用于pandas数据帧的每一行以创建两个新列

我有一个pandas DataFrame,st包含多个列:

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 53732 entries, 1993-01-07 12:23:58 to 2012-12-02 20:06:23
Data columns:
Date(dd-mm-yy)_Time(hh-mm-ss)       53732  non-null values
Julian_Day                          53732  non-null values
AOT_1020                            53716  non-null values
AOT_870                             53732  non-null values
AOT_675                             53188  non-null values
AOT_500                             51687  non-null values
AOT_440                             53727  non-null values
AOT_380                             51864  non-null values
AOT_340                             52852  non-null values
Water(cm)                           51687  non-null values
%Tripletvar_1020                    53710  non-null values
%Tripletvar_870                     53726  non-null values
%Tripletvar_675                     53182  non-null values
%Tripletvar_500                     51683  non-null values
%Tripletvar_440                     53721  non-null values
%Tripletvar_380                     51860  non-null values
%Tripletvar_340                     52846  non-null values
440-870Angstrom                     53732  non-null values
380-500Angstrom                     52253  non-null values
440-675Angstrom                     53732  non-null values
500-870Angstrom                     53732  non-null values
340-440Angstrom                     53277  non-null values
Last_Processing_Date(dd/mm/yyyy)    53732  non-null values
Solar_Zenith_Angle                  53732  non-null values
dtypes: datetime64[ns](1), float64(22), object(1)

我想基于将函数应用于数据帧的每一行,为此数据帧创建两个新列.我不想多次调用函数(例如,通过执行两次单独的应用调用),因为它是计算密集型的.我尝试过两种方式,但它们都不起作用:

使用申请:

我编写了一个函数,它接受一个Series并返回我想要的值的元组

def calculate(s):
    a = s['path'] + 2*s['row'] # Simple calc for example
    b = s['path'] * 0.153
    return (a, b)

尝试将此应用于DataFrame会出错:

st.apply(calculate, axis=1)
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-248-acb7a44054a7> in <module>()
----> 1 st.apply(calculate, axis=1)

C:\Python27\lib\site-packages\pandas\core\frame.pyc in apply(self, func, axis, broadcast, raw, args, **kwds)
   4191                     return self._apply_raw(f, axis)
   4192                 else:
-> 4193                     return self._apply_standard(f, axis)
   4194             else:
   4195                 return self._apply_broadcast(f, axis)

C:\Python27\lib\site-packages\pandas\core\frame.pyc in _apply_standard(self, func, axis, ignore_failures)
   4274                 index = None
   4275 
-> 4276             result = self._constructor(data=results, index=index)
   4277             result.rename(columns=dict(zip(range(len(res_index)), res_index)),
   4278                           inplace=True)

C:\Python27\lib\site-packages\pandas\core\frame.pyc in __init__(self, data, index, columns, dtype, copy)
    390             mgr = self._init_mgr(data, index, columns, dtype=dtype, copy=copy)
    391         elif isinstance(data, dict):
--> 392             mgr = self._init_dict(data, index, columns, dtype=dtype)
    393         elif isinstance(data, ma.MaskedArray):
    394             mask = ma.getmaskarray(data)

C:\Python27\lib\site-packages\pandas\core\frame.pyc in _init_dict(self, data, index, columns, dtype)
    521 
    522         return _arrays_to_mgr(arrays, data_names, index, columns,
--> 523                               dtype=dtype)
    524 
    525     def _init_ndarray(self, values, index, columns, dtype=None,

C:\Python27\lib\site-packages\pandas\core\frame.pyc in _arrays_to_mgr(arrays, arr_names, index, columns, dtype)
   5411 
   5412     # consolidate for Now
-> 5413     mgr = BlockManager(blocks, axes)
   5414     return mgr.consolidate()
   5415 

C:\Python27\lib\site-packages\pandas\core\internals.pyc in __init__(self, blocks, axes, do_integrity_check)
    802 
    803         if do_integrity_check:
--> 804             self._verify_integrity()
    805 
    806         self._consolidate_check()

C:\Python27\lib\site-packages\pandas\core\internals.pyc in _verify_integrity(self)
    892                                      "items")
    893             if block.values.shape[1:] != mgr_shape[1:]:
--> 894                 raise AssertionError('Block shape incompatible with manager')
    895         tot_items = sum(len(x.items) for x in self.blocks)
    896         if len(self.items) != tot_items:

AssertionError: Block shape incompatible with manager

然后,我将使用this question显示方法将应用返回的值分配给两个新列.但是,我甚至无法达到这一点!如果我只返回一个值,这一切都正常.

使用循环:

我首先创建了两个新的数据帧列,并将它们设置为None:

st['a'] = None
st['b'] = None

然后循环遍历所有索引并尝试修改我在那里得到的这些None值,但我做的修改似乎不起作用.也就是说,没有生成错误,但似乎没有修改DataFrame.

for i in st.index:
    # do calc here
    st.ix[i]['a'] = a
    st.ix[i]['b'] = b

我认为这两种方法都可行,但它们都没有.那么,我在这里做错了什么?什么是最好的,最“pythonic”和“pandaonic”的方式来做到这一点?

解决方法:

要使第一个方法起作用,请尝试返回一个Series而不是一个元组(apply正在抛出异常,因为它不知道如何将行粘合在一起,因为列数与原始帧不匹配).

def calculate(s):
    a = s['path'] + 2*s['row'] # Simple calc for example
    b = s['path'] * 0.153
    return pd.Series(dict(col1=a, col2=b))

如果您更换,第二种方法应该有效:

st.ix[i]['a'] = a

有:

st.ix[i, 'a'] = a

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐