微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 根据另一列中的值,用字符串替换一列中的NaN

简单地说,在列B =’t3’的情况下,我想用新字符串替换A列中的NaN值.

我下面的尝试都失败了.

d = pd.DataFrame({"A":[np.nan, 't2', np.nan, 't3', np.nan], "B":['t1', 't2', 't3', 't4', 't3']})
print "Original Dataframe:\n", d

# Does not work
d[d.B == 't3'].A = 'new_val'

# Does not work
d[d.B == 't3'].A.replace(np.nan, 'new_val')


# Does not work
d[d.B == 't3'].A.replace(np.nan, 'new_val', inplace=True)

print "Final Dataframe:\n", d

这是输出

Original Dataframe:
     A   B
0  NaN  t1
1   t2  t2
2  NaN  t3
3   t3  t4
4  NaN  t3

[5 rows x 2 columns]
Final Dataframe:
     A   B
0  NaN  t1
1   t2  t2
2  NaN  t3
3   t3  t4
4  NaN  t3

解决方法:

使用loc见http://pandas.pydata.org/pandas-docs/stable/indexing.html#different-choices-for-indexing-loc-iloc-and-ix

In [5]:

d.loc[(d['A'].isnull()) & (d.B == 't3'), 'A']='new_val'

d

Out[5]:

         A   B
0      NaN  t1
1       t2  t2
2  new_val  t3
3       t3  t4
4  new_val  t3

[5 rows x 2 columns]

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐