简单地说,在列B =’t3’的情况下,我想用新字符串替换A列中的NaN值.
我下面的尝试都失败了.
d = pd.DataFrame({"A":[np.nan, 't2', np.nan, 't3', np.nan], "B":['t1', 't2', 't3', 't4', 't3']})
print "Original Dataframe:\n", d
# Does not work
d[d.B == 't3'].A = 'new_val'
# Does not work
d[d.B == 't3'].A.replace(np.nan, 'new_val')
# Does not work
d[d.B == 't3'].A.replace(np.nan, 'new_val', inplace=True)
print "Final Dataframe:\n", d
这是输出:
Original Dataframe:
A B
0 NaN t1
1 t2 t2
2 NaN t3
3 t3 t4
4 NaN t3
[5 rows x 2 columns]
Final Dataframe:
A B
0 NaN t1
1 t2 t2
2 NaN t3
3 t3 t4
4 NaN t3
解决方法:
In [5]:
d.loc[(d['A'].isnull()) & (d.B == 't3'), 'A']='new_val'
d
Out[5]:
A B
0 NaN t1
1 t2 t2
2 new_val t3
3 t3 t4
4 new_val t3
[5 rows x 2 columns]
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。