print raster_arr_df
60.25 60.50 60.75 61.00 61.25 61.50 61.75 62.00 62.25 62.50 ... 94.75 \
3.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
3.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
3.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
4.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
5.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
6.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
7.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
8.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
9.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
10.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
10.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
10.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
... ... ... ... ... ... ... ... ... ... ... ... ...
35.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
36.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
37.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
38.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
39.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
40.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
41.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
42.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
43.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN
95.00 95.25 95.50 95.75 96.00 96.25 96.50 96.75 97.00
3.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
3.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
4.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
5.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
6.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
8.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
9.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
10.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ...
35.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
36.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
37.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
38.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
39.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
40.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
41.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN
42.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN
43.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN
[160 rows x 148 columns]
我的numpy数组如下所示:
print raster_arr
[[ 0. 0. 0. ..., 0.64464766 0.78923023
0.90317035]
[ 0. 0. 0. ..., 1.39210367 2.56416273
1.28261185]
[ 0. 0. 0. ..., 0.63526356 0.66092908
1.5844413 ]
...,
[ 2.04395676 1.64457083 1.70771551 ..., 8.11063385 2.57144356
1.60219038]
[ 2.46784496 2.20636702 1.82298481 ..., 2.11637998 2.1444006
2.13336754]
[ 3.26898718 3.19584775 2.69124269 ..., 2.74416089 2.27447248
6.18890047]]
Process finished with exit code 0
我想使用dataframe中的define索引和列将numpy中的所有值复制到pandas数据帧.
pandas数据帧和numpy数组的形状是相同的.
解决方法:
pandas.DataFrame(<numpy array>, index=df.index, columns=df.columns, dtype=None,
copy=False)
哪里:
数据是你的numpy数组,
index是数据帧的行,
列是列.
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。