微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

使用pandas或numpy填充缺少的时间序列数据

我有一个字典列表,如下所示:

L=[
{
"timeline": "2014-10", 
"total_prescriptions": 17
}, 
{
"timeline": "2014-11", 
"total_prescriptions": 14
}, 
{
"timeline": "2014-12", 
"total_prescriptions": 8
},
{
"timeline": "2015-1", 
"total_prescriptions": 4
}, 
{
"timeline": "2015-3", 
"total_prescriptions": 10
}, 
{
"timeline": "2015-4", 
"total_prescriptions": 3
} 
]

这基本上是SQL查询的结果,当给出开始日期和结束日期时,给出从开始日期到结束月份的每个月的总处方数.然而,对于处方计数为0的月份(2月) 2015),它完全跳过那个月.是否可以使用pandas或numpy来改变这个列表,以便为缺失的月份添加一个条目,其中0作为总处方如下:

[
{
"timeline": "2014-10", 
"total_prescriptions": 17
}, 
{
"timeline": "2014-11", 
"total_prescriptions": 14
}, 
{
"timeline": "2014-12", 
"total_prescriptions": 8
{
"timeline": "2015-1", 
"total_prescriptions": 4
}, 
{
"timeline": "2015-2",   # 2015-2 to be inserted for missing month
"total_prescriptions": 0 # 0 to be inserted for total prescription
}, 
{
"timeline": "2015-3", 
"total_prescriptions": 10
}, 
{
"timeline": "2015-4", 
"total_prescriptions": 3
} 
]

解决方法:

你所说的在熊猫中被称为“重新取样”;首先将您的时间转换为numpy日期时间并设置为您的索引:

df = pd.DataFrame(L)
df.index=pd.to_datetime(df.timeline,format='%Y-%m')
df
           timeline  total_prescriptions
timeline                                
2014-10-01  2014-10                   17
2014-11-01  2014-11                   14
2014-12-01  2014-12                    8
2015-01-01   2015-1                    4
2015-03-01   2015-3                   10
2015-04-01   2015-4                    3

然后你可以用重新采样(‘MS’)添加你缺少的月份(MS代表“月开始”我猜),并使用fillna(0)将空值转换为零,如您的要求.

df = df.resample('MS').fillna(0)
df
            total_prescriptions
timeline                       
2014-10-01                   17
2014-11-01                   14
2014-12-01                    8
2015-01-01                    4
2015-02-01                  NaN
2015-03-01                   10
2015-04-01                    3

要转换回原始格式,请使用to_native_types将datetime索引转换回字符串,然后使用to_dict(‘records’)导出:

df['timeline']=df.index.to_native_types()
df.to_dict('records')
[{'timeline': '2014-10-01', 'total_prescriptions': 17.0},
 {'timeline': '2014-11-01', 'total_prescriptions': 14.0},
 {'timeline': '2014-12-01', 'total_prescriptions': 8.0},
 {'timeline': '2015-01-01', 'total_prescriptions': 4.0},
 {'timeline': '2015-02-01', 'total_prescriptions': 0.0},
 {'timeline': '2015-03-01', 'total_prescriptions': 10.0},
 {'timeline': '2015-04-01', 'total_prescriptions': 3.0}]

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐