给定两个大型数据帧,是否有任何简洁有效的代码(避免直接使用任何for循环),这使我能够获得这两个数据帧的补充?
对我来说最直接的方法是计算union-intersection,如下面的天真示例所示,但我不知道如何用优雅的pandas或np语言实现它
df1= pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
df2= pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
intersection= pd.merge(df1, df2, how='inner',on=['key1', 'key2'])
union=pd.merge(df1, df2, how='outer',on=['key1', 'key2'])
complement=union-intersection
感谢您的任何意见和解答
解决方法:
从这开始:
df1= pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
df2= pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
intersection = pd.merge(df1, df2, how='inner',on=['key1', 'key2'])
union = pd.merge(df1, df2, how='outer',on=['key1', 'key2'])
印刷联盟
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A1 B1 K0 K1 NaN NaN
2 A2 B2 K1 K0 C1 D1
3 A2 B2 K1 K0 C2 D2
4 A3 B3 K2 K1 NaN NaN
5 NaN NaN K2 K0 C3 D3
印刷交叉口
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
union-intersection尝试这个:
union[union.isnull().any(axis=1)]
A B key1 key2 C D
1 A1 B1 K0 K1 NaN NaN
4 A3 B3 K2 K1 NaN NaN
5 NaN NaN K2 K0 C3 D3
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。