import pandas as pd
df = pd.DataFrame(
{'number': [0,0,0,1,1,2,2,2,2], 'id1': [100,100,100,300,400,700,700,800,700], 'id2': [100,100,200,500,600,700,800,900,1000]})
id1 id2 number
0 100 100 0
1 100 100 0
2 100 200 0
3 300 500 1
4 400 600 1
5 700 700 2
6 700 800 2
7 800 900 2
8 700 1000 2
(这代表了一个更大的数据帧,我正在使用〜数百万行).
我可以对一列应用groupby().unique:
df.groupby(['number'])['id1'].unique()
number
0 [100]
1 [300, 400]
2 [700, 800]
Name: id1, dtype: object
df.groupby(['number'])['id2'].unique()
number
0 [100, 200]
1 [500, 600]
2 [700, 800, 900, 1000]
Name: id2, dtype: object
我想同时在两个列上执行唯一操作,以便在数据帧中对其进行排序:
number
0 [100, 200]
1 [300, 400, 500, 600]
2 [700, 800, 900, 1000]
当我尝试为两列执行此操作时,我收到错误:
pd.Data.Frame(df.groupby(['number'])['id1', 'id2'].unique())
Traceback (most recent call last):
File "C:\python34\lib\site-packages\IPython\core\interactiveshell.py", line 2885, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-15-bfc6026e241e>", line 9, in <module>
df.groupby(['number'])['id1', 'id2'].unique()
File "C:\python34\lib\site-packages\pandas\core\groupby.py", line 498, in __getattr__
(type(self).__name__, attr))
AttributeError: 'DataFrameGroupBy' object has no attribute 'unique'
做什么?是否最好使用多指数?
编辑:另外可以获得如下输出:
number
0 100
0 200
1 300
1 400
1 500
1 600
2 700
2 800
2 900
2 1000
解决方法:
您可以按[]选择所有列:
s = (df.groupby(['number'])['id1', 'id2']
.apply(lambda x: pd.unique(x.values.ravel()).tolist()))
print (s)
number
0 [100, 200]
1 [300, 500, 400, 600]
2 [700, 800, 900, 1000]
dtype: object
要么:
s2 = (df.groupby(['number'])['id1', 'id2']
.apply(lambda x: np.unique(x.values.ravel()).tolist()))
print (s2)
number
0 [100, 200]
1 [300, 400, 500, 600]
2 [700, 800, 900, 1000]
dtype: object
编辑:
如果需要输出为列,请先重新整形stack
然后再转换为drop_duplicates
:
df1 = (df.set_index('number')[['id1', 'id2']]
.stack()
.reset_index(level=1, drop=True)
.reset_index(name='a')
.drop_duplicates())
print (df1)
number a
0 0 100
5 0 200
6 1 300
7 1 500
8 1 400
9 1 600
10 2 700
13 2 800
15 2 900
17 2 1000
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。