微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 根据列日期在数据框中为每个月添加行

我正在处理我需要推断不同月份的财务数据.这是我的数据帧:

invoice_id,date_from,date_to
30492,2019-02-04,2019-09-18

我想在date_from和date_to之间的不同月份打破这个.因此,我需要为每个月添加行,包括月开始日期到结束日期.最终输出应如下所示:

invoice_id,date_from,date_to
30492,2019-02-04,2019-02-28
30492,2019-03-01,2019-03-31
30492,2019-04-01,2019-04-30
30492,2019-05-01,2019-05-31
30492,2019-06-01,2019-06-30
30492,2019-07-01,2019-07-31
30492,2019-08-01,2019-08-30
30492,2019-09-01,2019-09-18

需要照顾闰年情景. pandas datetime包中是否有任何本机方法可用于实现所需的输出

解决方法:

使用:

print (df)
   invoice_id  date_from    date_to
0       30492 2019-02-04 2019-09-18
1       30493 2019-01-20 2019-03-10

#added months between date_from and date_to
df1 = pd.concat([pd.Series(r.invoice_id,pd.date_range(r.date_from, r.date_to, freq='MS')) 
                 for r in df.itertuples()]).reset_index()
df1.columns = ['date_from','invoice_id']

#added starts of months - sorting for correct positions
df2 = (pd.concat([df[['invoice_id','date_from']], df1], sort=False, ignore_index=True)
         .sort_values(['invoice_id','date_from'])
         .reset_index(drop=True))

#added MonthEnd and date_to  to last rows
mask = df2['invoice_id'].duplicated(keep='last')
s = df2['invoice_id'].map(df.set_index('invoice_id')['date_to'])
df2['date_to'] = np.where(mask, df2['date_from'] + pd.offsets.MonthEnd(), s)

print (df2)
    invoice_id  date_from    date_to
0        30492 2019-02-04 2019-02-28
1        30492 2019-03-01 2019-03-31
2        30492 2019-04-01 2019-04-30
3        30492 2019-05-01 2019-05-31
4        30492 2019-06-01 2019-06-30
5        30492 2019-07-01 2019-07-31
6        30492 2019-08-01 2019-08-31
7        30492 2019-09-01 2019-09-18
8        30493 2019-01-20 2019-01-31
9        30493 2019-02-01 2019-02-28
10       30493 2019-03-01 2019-03-10

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐