我的目标是让熊猫等同于以下R代码:
df1$String_1_check = ifelse(df1$String_1 == df2[match(df1$String_2, df2$String_2), 1], TRUE, FALSE)
如果df1列String_1的第n行中的值等于df2的第一列,其中df1的列String_2的第n行与df2的String_2匹配,则在新列String_1_check中为True,否则在String_1_check中为False.
df1在String_1和String_2中有许多相同值的实例,而df2在String_1中只有每个可能值的一个实例. String_3不是唯一的.使用这些示例数据帧:
df1 = pd.DataFrame({'String_1': ['string 1', 'string 1', 'string 2', 'string 3', 'string 1'], 'String_2': ['string a', 'string a', 'string b', 'string a', 'string c']})
df2 = pd.DataFrame({'String_3': ['string 1', 'string 2', 'string 3'], 'String_2': ['string a', 'string b', 'string c']})
String_1 String_2
0 string 1 string a
1 string 1 string a
2 string 2 string b
3 string 3 string a
4 string 1 string c
String_3 String_2
0 string 1 string a
1 string 2 string b
2 string 3 string c
期望的输出是:
String_1 String_2 String_1_check
0 string 1 string a True
1 string 1 string a True
2 string 2 string b True
3 string 3 string a False
4 string 1 string c False
我试过np.where,isin,pd.match(现在已弃用),但还没有找到解决方案.
解决方法:
您可以使用地图而无需更改原始df的顺序
df1['String_1_check']=list(zip(df1['String_1'],df1['String_2']))
df2.index=list(zip(df2['String_3'],df2['String_2']))
df2['Check']=True
df1['String_1_check']=df1['String_1_check'].map(df2['Check']).fillna(False)
Out[764]:
String_1 String_2 String_1_check
0 string 1 string a True
1 string 1 string a True
2 string 2 string b True
3 string 3 string a False
4 string 1 string c False
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。