微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – Pandas groupby并在列表中获得dict

我正在尝试提取分组行数据以使用值将标签颜色绘制为另一个文件.

我的数据框如下所示.

df = pd.DataFrame({'x': [1, 4, 5], 'y': [3, 2, 5], 'label': [1.0, 1.0, 2.0]})

    x   y   label
0   1   3   1.0
1   4   2   1.0
2   5   5   2.0

我想获得一组标签列表

{'1.0': [{'index': 0, 'x': 1, 'y': 3}, {'index': 1, 'x': 4, 'y': 2}],
 '2.0': [{'index': 2, 'x': 5, 'y': 5}]}

这该怎么做?

@H_502_20@解决方法:

您可以使用itertuplesdefulatdict

itertuples返回命名元组以迭代数据帧:

for row in df.itertuples():
    print(row)
Pandas(Index=0, x=1, y=3, label=1.0)
Pandas(Index=1, x=4, y=2, label=1.0)
Pandas(Index=2, x=5, y=5, label=2.0)

所以利用这个:

from collections import defaultdict
dictionary = defaultdict(list)
for row in df.itertuples():
    dummy['x'] = row.x
    dummy['y'] = row.y
    dummy['index'] = row.Index
    dictionary[row.label].append(dummy)

dict(dictionary)
> {1.0: [{'x': 1, 'y': 3, 'index': 0}, {'x': 4, 'y': 2, 'index': 1}],
 2.0: [{'x': 5, 'y': 5, 'index': 2}]}

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐