全部 –
我期待从一个非常大的csv的第一行和最后一行创建一个pandas DataFrame.本练习的目的是能够轻松地从这些csv文件中的第一个和最后一个条目中获取一些属性.我使用以下方法抓住csv的第一行没有问题:
pd.read_csv(filename, nrows=1)
我也可以通过各种方式抓取文本文件的最后一行,例如:
with open(filename) as f:
last_line = f.readlines()[-1]
但是,将这两个东西放到一个DataFrame中会让我感到厌恶.有关如何最好地实现这一目标的任何见解?
编辑注意:我正在尝试完成此任务,而不是首先将所有数据加载到单个DataFrame中,因为我正在处理相当大(> 15MM行)的csv文件.
谢谢!
解决方法:
只需使用头部和尾部和concat.您甚至可以调整行数.
import pandas as pd
df = pd.read_csv("flu.csv")
top = df.head(1)
bottom = df.tail(1)
concatenated = pd.concat([top,bottom])
print concatenated
结果:
Date Cases
0 9/1/2014 45
121 12/31/2014 97
调整头部和尾部从顶部开始5行,从底部调整10行…
Date Cases
0 9/1/2014 45
1 9/2/2014 104
2 9/3/2014 47
3 9/4/2014 108
4 9/5/2014 49
112 12/22/2014 30
113 12/23/2014 81
114 12/24/2014 99
115 12/25/2014 85
116 12/26/2014 55
117 12/27/2014 91
118 12/28/2014 68
119 12/29/2014 109
120 12/30/2014 55
121 12/31/2014 97
如果您不想将整个CSV文件作为数据框加载,可以使用的一种可能方法是将它们单独处理为CSV.以下代码与您的方法类似.
import pandas as pd
import csv
top = pd.read_csv("flu.csv", nrows=1)
headers = top.columns.values
with open("flu.csv", "r") as f, open("flu2.csv","w") as g:
last_line = f.readlines()[-1].strip().split(",")
c = csv.writer(g)
c.writerow(headers)
c.writerow(last_line)
bottom = pd.read_csv("flu2.csv")
concatenated = pd.concat([top, bottom])
concatenated.reset_index(inplace=True, drop=True)
print concatenated
除索引外,结果相同.测试了一百万行,并在大约一秒钟内处理.
Date Cases
0 9/1/2014 45
1 7/25/4885 99
[Finished in 0.9s]
它如何扩展到1500万行,也许这就是你现在的球赛.
所以我决定对15,728,626行进行测试,结果看起来不错.
Date Cases
0 9/1/2014 45
1 7/25/4885 99
[Finished in 3.3s]
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。