微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – Pandas替换为默认值

我有一个pandas数据帧我想有条件地替换某个列.

例如:

   col

 0 Mr
 1 Miss
 2 Mr
 3 Mrs
 4 Col.

我想将它们映射为

{'Mr': 0, 'Mrs': 1, 'Miss': 2}

如果dict中现在有其他标题可用,那么我希望它们的认值为3

上面的例子变成了

   col

 0 0
 1 2
 2 0
 3 1
 4 3

我可以使用pandas.replace()而不使用正则表达式吗?

解决方法:

您可以使用map而不是替换,因为更快,然后fillna乘3并在astype之前转换为int:

df['col'] = df.col.map({'Mr': 0, 'Mrs': 1, 'Miss': 2}).fillna(3).astype(int)

print (df)
   col
0    0
1    2
2    0
3    1
4    3

numpy.where的另一个解决方案和isin的条件:

d = {'Mr': 0, 'Mrs': 1, 'Miss': 2}
df['col'] = np.where(df.col.isin(d.keys()), df.col.map(d), 3).astype(int)
print (df)
   col
0    0
1    2
2    0
3    1
4    3

解决方replace

d = {'Mr': 0, 'Mrs': 1, 'Miss': 2}
df['col'] = np.where(df.col.isin(d.keys()), df.col.replace(d), 3)
print (df)
   col
0    0
1    2
2    0
3    1
4    3

时序:

df = pd.concat([df]*10000).reset_index(drop=True)

d = {'Mr': 0, 'Mrs': 1, 'Miss': 2}
df['col0'] = df.col.map(d).fillna(3).astype(int)
df['col1'] = np.where(df.col.isin(d.keys()), df.col.replace(d), 3)
df['col2'] = np.where(df.col.isin(d.keys()), df.col.map(d), 3).astype(int)
print (df)

In [447]: %timeit df['col0'] = df.col.map(d).fillna(3).astype(int)
100 loops, best of 3: 4.93 ms per loop

In [448]: %timeit df['col1'] = np.where(df.col.isin(d.keys()), df.col.replace(d), 3)
100 loops, best of 3: 14.3 ms per loop

In [449]: %timeit df['col2'] = np.where(df.col.isin(d.keys()), df.col.map(d), 3).astype(int)
100 loops, best of 3: 7.68 ms per loop

In [450]: %timeit df['col3'] = df.col.map(lambda L: d.get(L, 3))
10 loops, best of 3: 36.2 ms per loop

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐