我有以下数据集:
import datetime
import pandas as pd
df = pd.DataFrame({'PORTFOLIO': ['A', 'A', 'A', 'A','A', 'A', 'A', 'A','A', 'A','A', 'A', 'A', 'A'],
'DATE': ['28-02-2018','31-03-2018','30-04-2018','31-05-2018','30-06-2018','31-07-2018','31-08-2018',
'30-09-2018','31-10-2018','30-11-2018','31-12-2018','31-01-2019','28-02-2019','05-03-2019'],
'IRR': [.7, .8, .9, .4, .2, .3, .4, .9, .7, .8, .9, .4,.7, .8],
})
df
PORTFOLIO DATE IRR
0 A 2018-02-28 0.7
1 A 2018-03-31 0.8
2 A 2018-04-30 0.9
3 A 2018-05-31 0.4
4 A 2018-06-30 0.2
5 A 2018-07-31 0.3
6 A 2018-08-31 0.4
7 A 2018-09-30 0.9
8 A 2018-10-31 0.7
9 A 2018-11-30 0.8
10 A 2018-12-31 0.9
11 A 2019-01-31 0.4
12 A 2019-02-28 0.7
13 A 2019-05-03 0.8
您可能会看到,除了05-03-2019之外,所有日期都是“月底”.我需要的是如果不是“月末”,则删除DATE值.
我糟糕的时态解决方案是
df2=df[df.TODATE < '2019-03-01']
这不好,因为代码应该更通用.
我怎么做?
解决方法:
这可以在单行中完成:
使用pandas.Series.dt.is_month_end
df[pd.to_datetime(df["DATE"]).dt.is_month_end]
会给你你的结果.
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。