微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 将数据帧输出到json数组

我想知道是否有更有效的方法来执行以下操作.

# transforms datetime into timestamp in seconds
t = df.index.values.astype(np.int64) // 10**6

return jsonify(np.c_[t, df.open, df.high, df.low, df.close, df.volume].tolist())

其中df是一个包含索引的数据框,该索引是一个日期,并且至少(但不仅仅是)以下属性:open,high,low,close,volume.然后我使用flask的jsonify将新创建的数组输出为JSON.上面的代码可以工作,但对于我如何使其更好/更高效的任何想法,它看起来非常低效.

解决方法:

你可以使用to_json()方法

In [88]: import pandas_datareader.data as web

In [89]: apl = web.get_data_yahoo('AAPL', '2016-07-05', '2016-07-07')

In [90]: apl
Out[90]:
                 Open       High        Low      Close    Volume  Adj Close
Date
2016-07-05  95.389999  95.400002  94.459999  94.989998  27705200  94.989998
2016-07-06  94.599998  95.660004  94.370003  95.529999  30949100  95.529999
2016-07-07  95.699997  96.500000  95.620003  95.940002  25139600  95.940002

我将使用json.dumps(…,indent = 2)以使其更好/可读:

In [91]: import json

东方=“索引”

In [98]: print(json.dumps(json.loads(apl.to_json(orient='index')), indent=2))
{
  "1467849600000": {
    "Close": 95.940002,
    "High": 96.5,
    "Open": 95.699997,
    "Adj Close": 95.940002,
    "Volume": 25139600,
    "Low": 95.620003
  },
  "1467676800000": {
    "Close": 94.989998,
    "High": 95.400002,
    "Open": 95.389999,
    "Adj Close": 94.989998,
    "Volume": 27705200,
    "Low": 94.459999
  },
  "1467763200000": {
    "Close": 95.529999,
    "High": 95.660004,
    "Open": 94.599998,
    "Adj Close": 95.529999,
    "Volume": 30949100,
    "Low": 94.370003
  }
}

orient =’records'(重置索引以使列Date可见):

In [99]: print(json.dumps(json.loads(apl.reset_index().to_json(orient='records')), indent=2))
[
  {
    "Close": 94.989998,
    "High": 95.400002,
    "Open": 95.389999,
    "Adj Close": 94.989998,
    "Volume": 27705200,
    "Date": 1467676800000,
    "Low": 94.459999
  },
  {
    "Close": 95.529999,
    "High": 95.660004,
    "Open": 94.599998,
    "Adj Close": 95.529999,
    "Volume": 30949100,
    "Date": 1467763200000,
    "Low": 94.370003
  },
  {
    "Close": 95.940002,
    "High": 96.5,
    "Open": 95.699997,
    "Adj Close": 95.940002,
    "Volume": 25139600,
    "Date": 1467849600000,
    "Low": 95.620003
  }
]

您可以使用以下to_json()参数:

date_format : {‘epoch’, ‘iso’}

Type of date conversion. epoch = epoch milliseconds, iso` = ISO8601, default is epoch.

date_unit : string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision.
One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and
nanosecond respectively.

orient : string

The format of the JSON string

  • split : dict like {index -> [index], columns -> [columns], data -> [values]}
  • records : list like [{column -> value}, … , {column -> value}]
  • index : dict like {index -> {column -> value}}
  • columns : dict like {column -> {index -> value}} values : just the values array

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐