我想在groupby期间将非连续的id视为不同的变量,这样我就可以返回stamp的第一个值,并将增量之和作为新的数据帧.这是示例输入和输出.
import pandas as pd
import numpy as np
df = pd.DataFrame([np.array(['a','a','a','b','c','b','b','a','a','a']),
np.arange(1, 11), np.ones(10)]).T
df.columns = ['id', 'stamp', 'increment']
df_result = pd.DataFrame([ np.array(['a','b','c','b','a']),
np.array([1,4,5,6,8]), np.array([3,1,1,2,3])]).T
df_result.columns = ['id', 'stamp', 'increment_sum']
In [2]: df
Out[2]:
id stamp increment
0 a 1 1
1 a 2 1
2 a 3 1
3 b 4 1
4 c 5 1
5 b 6 1
6 b 7 1
7 a 8 1
8 a 9 1
9 a 10 1
In [3]: df_result
Out[3]:
id stamp increment_sum
0 a 1 3
1 b 4 1
2 c 5 1
3 b 6 2
4 a 8 3
我可以通过这个完成
def get_result(d):
sum = d.increment.sum()
stamp = d.stamp.min()
name = d.id.max()
return name, stamp, sum
#idea from https://stackoverflow.com/questions/25147091/combine-consecutive-rows-with-the-same-column-values
df['key'] = (df['id'] != df['id'].shift(1)).astype(int).cumsum()
result = zip(*df.groupby([df.key]).apply(get_result))
df = pd.DataFrame(np.array(result).T)
df.columns = ['id', 'stamp', 'increment_sum']
解决方法:
> df_group = df.groupby('id')
我们不能单独使用id作为groupby,所以在id中添加另一个新列到groupby是否是连续的
> df['group_diff'] = df_group['stamp'].diff().apply(lambda v: float('nan') if v == 1 else v).ffill().fillna(0)
> df
id stamp increment group_diff
0 a 1 1 0
1 a 2 1 0
2 a 3 1 0
3 b 4 1 0
4 c 5 1 0
5 b 6 1 2
6 b 7 1 2
7 a 8 1 5
8 a 9 1 5
9 a 10 1 5
现在我们可以将新列group_diff用于辅助分组.最后按照注释中的建议添加排序函数以获得确切的功能
> df.groupby(['id','group_diff']).agg({'increment':sum, 'stamp': 'first'}).reset_index()[['id', 'stamp','increment']].sort('stamp')
id stamp increment
0 a 1 3
2 b 4 1
4 c 5 1
3 b 6 2
1 a 8 3
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。