Pandas timedeltaIndex有一个属性天数,可以用于其他正常dtypes(float64等)的操作:
import pandas as pd
from pandas.tseries import offsets
idx1 = pd.date_range('2017-01', periods=10)
idx2 = idx1 + offsets.MonthEnd(1)
tds = idx2 - idx1
print(tds.days - 2)
Int64Index([28, 27, 26, 25, 24, 23, 22, 21, 20, 19], dtype='int64')
但是当tds转换为Series(显式或作为DataFrame列)时,它会丢失此属性.
print(pd.Series(tds).days)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-115-cb20b4d368f4> in <module>()
----> 1 print(pd.Series(tds).days)
C:\Users\bsolomon\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
3079 if name in self._info_axis:
3080 return self[name]
-> 3081 return object.__getattribute__(self, name)
3082
3083 def __setattr__(self, name, value):
AttributeError: 'Series' object has no attribute 'days'
访问.days需要转换回索引:
print(pd.Index(pd.Series(tds)).days)
Int64Index([30, 29, 28, 27, 26, 25, 24, 23, 22, 21], dtype='int64')
是否有比上述转换更直接的方式来访问此属性?
解决方法:
使用.dt
访问器:
print(pd.Series(tds).dt.days)
输出:
0 30
1 29
2 28
3 27
4 26
5 25
6 24
7 23
8 22
9 21
dtype: int64
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。