我正在开发一个文本挖掘项目,我正在尝试使用手动编写的字典替换文本中存在的缩写,俚语和互联网首字母缩略词(在数据框列中).
我面临的问题是代码在dataframe列中的第一个单词停止,并且不会用dict中的查找单词替换它
这是我使用的示例字典和代码:
abbr_dict = {"abt":"about", "b/c":"because"}
def _lookup_words(input_text):
words = input_text.split()
new_words = []
for word in words:
if word.lower() in abbr_dict:
word = abbr_dict[word.lower()]
new_words.append(word)
new_text = " ".join(new_words)
return new_text
df['new_text'] = df['text'].apply(_lookup_words)
示例输入:
df['text'] =
However, industry experts are divided ab whether a Bitcoin ETF is necessary or not.
期望的输出:
df['New_text'] =
However, industry experts are divided about whether a Bitcoin ETF is necessary or not.
电流输出:
df['New_text'] =
However
解决方法:
你可以尝试如下使用lambda并与split一起连接:
import pandas as pd
abbr_dict = {"abt":"about", "b/c":"because"}
df = pd.DataFrame({'text': ['However, industry experts are divided abt whether a Bitcoin ETF is necessary or not.']})
df['new_text'] = df['text'].apply(lambda row: " ".join(abbr_dict[w]
if w.lower() in abbr_dict else w for w in row.split()))
或者为了修复上面的代码,我认为你需要在for循环之外移动new_text和return语句的连接:
def _lookup_words(input_text):
words = input_text.split()
new_words = []
for word in words:
if word.lower() in abbr_dict:
word = abbr_dict[word.lower()]
new_words.append(word)
new_text = " ".join(new_words) # ..... change here
return new_text # ..... change here also
df['new_text'] = df['text'].apply(_lookup_words)
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。