我有一个Dataframe,其中包含一列中的id和另一列中的日期:
import pandas as pd
df = pd.DataFrame([['2018-01-01', {1, 2, 3}],
['2018-01-02', {3}],
['2018-01-03', {3, 4, 5}],
['2018-01-04', {5, 6}]],
columns=['timestamp', 'ids'])
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index('timestamp', inplace=True)
ids
timestamp
2018-01-01 {1, 2, 3}
2018-01-02 {3}
2018-01-03 {3, 4, 5}
2018-01-04 {5, 6}
我正在寻找的功能可以给我每天最后x天的ID.所以,假设x = 3,我希望结果如下:
ids
timestamp
2018-01-01 {1, 2, 3}
2018-01-02 {1, 2, 3}
2018-01-03 {1, 2, 3, 4, 5}
2018-01-04 {3, 4, 5, 6}
我试过了
df.rolling(3).agg(set.union)
但这会导致以下错误:
Traceback (most recent call last):
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 222, in _prep_values
values = _ensure_float64(values)
File "pandas\_libs\algos_common_helper.pxi", line 3182, in pandas._libs.algos.ensure_float64
File "pandas\_libs\algos_common_helper.pxi", line 3187, in pandas._libs.algos.ensure_float64
TypeError: float() argument must be a string or a number, not 'set'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 1561, in aggregate
return super(Rolling, self).aggregate(arg, *args, **kwargs)
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 321, in aggregate
return self.apply(arg, raw=False, args=args, kwargs=kwargs)
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 1580, in apply
func, raw=raw, args=args, kwargs=kwargs)
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 1003, in apply
center=False, raw=raw)
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 844, in _apply
values = self._prep_values(b.values)
File "C:\Users\m.manhertz\Envs\demo-8EG6nosu\lib\site-packages\pandas\core\window.py", line 225, in _prep_values
"".format(values.dtype))
TypeError: cannot handle this type -> object
解决方法:
Pandas不是为了在pd.Series对象中保存诸如list,set,dict之类的迭代.因此,您的逻辑不可矢量化.您最好的选择可能是列表理解:
import pandas as pd
df = pd.DataFrame([['2018-01-01', {1, 2, 3}],
['2018-01-02', {3}],
['2018-01-03', {3, 4, 5}],
['2018-01-04', {3, 6}]],
columns=['timestamp', 'ids'])
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index('timestamp', inplace=True)
df['ids'] = [set.union(*df.iloc[max(0, i-2): i+1, 0]) for i in range(len(df.index))]
print(df)
ids
timestamp
2018-01-01 {1, 2, 3}
2018-01-02 {1, 2, 3}
2018-01-03 {1, 2, 3, 4, 5}
2018-01-04 {3, 4, 5, 6}
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。