我有一个数据对应于DB列表和差异行,其中包含它们正在使用的日期.
DB Dates USAGE
ABC 03-06-2018 IN USE
ABC 07-06-2018 IN USE
XYZ 04-06-2018 IN USE
XYZ 08-06-2018 IN USE
我想要的是拥有与每个数据库相对应的完整日历月,而不仅仅是它们使用的日期
DB Dates USAGE
ABC 01-06-2018 NOT IN USE
ABC 02-06-2018 NOT IN USE
ABC 03-06-2018 IN USE
.
.
ABC 07-06-2018 IN USE
.
.
ABC 30-06-2018 NOT IN USE
XYZ 01-06-2018 NOT IN USE
.
.
XYZ 30-06-2018 NOT IN USE
解决方法:
使用:
df['Dates'] = pd.to_datetime(df['Dates'], format='%d-%m-%Y')
a = df['Dates'].dt.to_period('m')
dates = pd.date_range(a.min().to_timestamp('ms'), a.max().to_timestamp('m'))
mux = pd.MultiIndex.from_product([df['DB'].unique(), dates], names=['DB','Dates'])
df = df.set_index(['DB','Dates'])['USAGE'].reindex(mux, fill_value='NOT IN USE').reset_index()
print (df.head())
DB Dates USAGE
0 ABC 2018-06-01 NOT IN USE
1 ABC 2018-06-02 NOT IN USE
2 ABC 2018-06-03 IN USE
3 ABC 2018-06-04 NOT IN USE
4 ABC 2018-06-05 NOT IN USE
print (df.tail())
DB Dates USAGE
55 XYZ 2018-06-26 NOT IN USE
56 XYZ 2018-06-27 NOT IN USE
57 XYZ 2018-06-28 NOT IN USE
58 XYZ 2018-06-29 NOT IN USE
59 XYZ 2018-06-30 NOT IN USE
详情:
print (dates)
DatetimeIndex(['2018-06-01', '2018-06-02', '2018-06-03', '2018-06-04',
'2018-06-05', '2018-06-06', '2018-06-07', '2018-06-08',
'2018-06-09', '2018-06-10', '2018-06-11', '2018-06-12',
'2018-06-13', '2018-06-14', '2018-06-15', '2018-06-16',
'2018-06-17', '2018-06-18', '2018-06-19', '2018-06-20',
'2018-06-21', '2018-06-22', '2018-06-23', '2018-06-24',
'2018-06-25', '2018-06-26', '2018-06-27', '2018-06-28',
'2018-06-29', '2018-06-30'],
dtype='datetime64[ns]', freq='D')
Exlanation:
>首先转换列to_datetime
>创建所有可能的日期 – 首先将列转换为to_period
,然后使用to_timestamp将其转换为date_range
,包括月末和月末
>然后创建MultiIndex from_product
>和reindex
,替换缺失值.
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。