微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 作为虚拟列的范围(列表)

我有两列有开始和结束范围.我想为这列之间的范围制作虚拟列.我可以通过apply方法制作它,但它很慢.我可以不申请(因为我有~2-5M行).

整个DataFrame:

    start     end
0   36        36
1   31        31
2   29        29
3   10        10
4   35        35
5   42        44
6   24        26

我想看到的:

    start   end 8   9   10  24  25  26  29  31  35  36  42  43  44
0   36      36  NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN
1   31      31  NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN
2   29      29  NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN
3   10      10  NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4   35      35  NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
5   42      44  NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0
6   24      26  NaN NaN NaN 1.0 1.0 1.0 NaN NaN NaN NaN NaN NaN NaN
7   25      25  NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN
8   35      35  NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
9   8       10  1.0 1.0 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

现在我使用这段代码

import itertools

def zip_with_scalar(l, o):
    return dict(zip(l, itertools.repeat(o)))
df.merge(df.apply(lambda s: pd.Series(zip_with_scalar(range(s['start'], s['end']+1), 1)), axis = 1), left_index=True, right_index=True)

解决方法:

使用列表理解与DataFrame构造函数

a = [dict.fromkeys(range(x, y), 1) for x, y in zip(df['start'], df['end']+1)]
df = df.join(pd.DataFrame(a, index=df.index))
print (df)
   start  end   10   24   25   26   29   31   35   36   42   43   44
0     36   36  NaN  NaN  NaN  NaN  NaN  NaN  NaN  1.0  NaN  NaN  NaN
1     31   31  NaN  NaN  NaN  NaN  NaN  1.0  NaN  NaN  NaN  NaN  NaN
2     29   29  NaN  NaN  NaN  NaN  1.0  NaN  NaN  NaN  NaN  NaN  NaN
3     10   10  1.0  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN
4     35   35  NaN  NaN  NaN  NaN  NaN  NaN  1.0  NaN  NaN  NaN  NaN
5     42   44  NaN  NaN  NaN  NaN  NaN  NaN  NaN  NaN  1.0  1.0  1.0
6     24   26  NaN  1.0  1.0  1.0  NaN  NaN  NaN  NaN  NaN  NaN  NaN

性能

#[70000 rows x 2 columns]
df = pd.concat([df] * 10000, ignore_index=True)

def a(df):
    a = [dict.fromkeys(range(x, y), 1) for x, y in zip(df['start'], df['end']+1)]
    return df.join(pd.DataFrame(a, index=df.index))

import itertools

def zip_with_scalar(l, o):
    return dict(zip(l, itertools.repeat(o)))
def b(df):
    return df.merge(df.apply(lambda s: pd.Series(zip_with_scalar(range(s['start'], s['end']+1), 1)), axis = 1), left_index=True, right_index=True)


In [176]: %timeit a(df.copy())
202 ms ± 6.05 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [177]: %timeit b(df.copy())
38.9 s ± 1.19 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐