微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – pandas concat中的levels选项

df1 = DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
        columns=['one', 'two'])
df2 = DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
        columns=['three', 'four'])

>>> df1
   one  two
a    0    1
b    2    3
c    4    5

>>> df2
   three  four
a      5     6
c      7     8


res = pd.concat([df1, df2], axis=1, levels=['level1', 'level2'],
        names=['upper', 'lower'])
>>> res
   one  two  three  four
a    0    1      5     6
b    2    3    NaN   NaN
c    4    5      7     8

我的问题是为什么级别和名称没有显示在上面的res输出中?如何使用level选项的任何真实示例?

谢谢你的时间和帮助

解决方法:

非常有趣的问题.

我在SO研究但从未使用过:(

但在docs一个通知的样本:

Yes, this is fairly esoteric, but is actually necessary for implementing things like GroupBy where the order of a categorical variable is meaningful.

docs也说:

levels : list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys.

因此它为MultiIndex添加了新的级别:

res = pd.concat([df1, df2], axis=1,
                keys=['level1','level2'], 
                levels=[['level1', 'level2','level3']], 
                names=['upper', 'lower'])

print (res)
upper level1     level2     
lower    one two  three four
a          0   1    5.0  6.0
b          2   3    NaN  NaN
c          4   5    7.0  8.0

print (res.columns)
MultiIndex(levels=[['level1', 'level2', 'level3'], ['four', 'one', 'three', 'two']],
           labels=[[0, 0, 1, 1], [1, 3, 2, 0]],
           names=['upper', 'lower'])

同样没有参数级别:

res = pd.concat([df1, df2], axis=1,
                keys=['level1','level2'], 
                names=['upper', 'lower'])

print (res)
upper level1     level2     
lower    one two  three four
a          0   1    5.0  6.0
b          2   3    NaN  NaN
c          4   5    7.0  8.0

print (res.columns)
MultiIndex(levels=[['level1', 'level2'], ['four', 'one', 'three', 'two']],
           labels=[[0, 0, 1, 1], [1, 3, 2, 0]],
           names=['upper', 'lower'])

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐