+----------------------------+------+
| time | seq |
+----------------------------+------+
| 2015-06-19 02:17:57.389509 | 0 |
| 2015-06-19 02:17:57.934171 | 10 |
+----------------------------+------+
我想把它读成一个pandas Dataframe.运用
import pandas as pd
con = get_connection()
result = pd.read_sql("SELECT * FROM MyTable;", con=con)
print result
返回NaT(不是时间):
time seq
0 NaT 0
1 NaT 10
如何将其读入时间戳?
解决方法:
通常,要转换时间戳,可以使用pandas.to_datetime().
>>> import pandas as pd
>>> pd.to_datetime('2015-06-19 02:17:57.389509')
Timestamp('2015-06-19 02:17:57.389509')
从docs开始,从sql读入时,您可以显式强制将列解析为日期:
pd.read_sql_table('data', engine, parse_dates=['Date'])
或者更明确地,指定格式字符串或传递给pandas.to_datetime()的参数的字典:
pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'})
要么
pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%s'}})
添加快速概念证明.注意,我正在使用sqlITE.假设您将时间戳存储为字符串:
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData
import pandas as pd
engine = create_engine('sqlite:///:memory:', echo=True)
datapoints = [{'ts': '2015-06-19 02:17:57.389509', 'seq': 0},
{'ts':'2015-06-19 02:17:57.934171', 'seq': 10}]
Metadata = MetaData()
mydata = Table('mydata', Metadata,
Column('ts', String),
Column('seq', Integer),
)
Metadata.create_all(engine)
ins = mydata.insert()
conn = engine.connect()
conn.execute(ins, datapoints)
foo = pd.read_sql_table('mydata', engine, parse_dates=['ts'])
print(foo)
输出:
ts seq
0 2015-06-19 02:17:57.389509 0
1 2015-06-19 02:17:57.934171 10
或者,如果您将它们存储为日期时间对象,它的工作方式相同(代码差异是我以datetime格式将数据导入数据库):
from datetime import datetime
from sqlalchemy import create_engine, Table, Column, Integer, DateTime, MetaData
import pandas as pd
engine = create_engine('sqlite:///:memory:', echo=True)
datapoints = [{'ts': datetime.strptime('2015-06-19 02:17:57.389509', '%Y-%m-%d %H:%M:%s.%f'), 'seq': 0},
{'ts':datetime.strptime('2015-06-19 02:17:57.934171', '%Y-%m-%d %H:%M:%s.%f'), 'seq': 10}]
Metadata = MetaData()
mydata = Table('mydata', Metadata,
Column('ts', DateTime),
Column('seq', Integer),
)
Metadata.create_all(engine)
ins = mydata.insert()
conn = engine.connect()
conn.execute(ins, datapoints)
foo = pd.read_sql_table('mydata', engine, parse_dates=['ts'])
print(foo)
输出相同:
ts seq
0 2015-06-19 02:17:57.389509 0
1 2015-06-19 02:17:57.934171 10
希望这可以帮助.
编辑为了解决@joris的问题,sqlite将所有日期时间对象存储为字符串,但是内置适配器在获取时会自动将这些对象转换回datetime对象.扩展第二个例子:
from sqlalchemy.sql import select
s = select([mydata])
res = conn.execute(s)
row = res.fetchone()
print(type(row['ts']))
结果为< class'datetime.datetime'>
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。