import pandas as pd
import numpy as np
pb = {"mark_up_id":{"0":"123","1":"456","2":"789","3":"111","4":"222"},"mark_up":{"0":1.2987,"1":1.5625,"2":1.3698,"3":1.3333,"4":1.4589}}
data = {"id":{"0":"K69","1":"K70","2":"K71","3":"K72","4":"K73","5":"K74","6":"K75","7":"K79","8":"K86","9":"K100"},"cost":{"0":29.74,"1":9.42,"2":9.42,"3":9.42,"4":9.48,"5":9.48,"6":24.36,"7":5.16,"8":9.8,"9":3.28},"mark_up_id":{"0":"123","1":"456","2":"789","3":"111","4":"222","5":"333","6":"444","7":"555","8":"666","9":"777"}}
pb = pd.DataFrame(data=pb).set_index('mark_up_id')
df = pd.DataFrame(data=data)
我知道我可以使用类似的东西:
df['mark_up_id'].map(pb['mark_up'])
执行V查找.我想把这个回报加标,然后用每个成本乘以一个公共索引来产生一个名为price的新列.
我知道我可以将两者合并然后运行计算.这就是我产生所需输出的方式.我希望能够做到这一点类似于你如何遍历字典并使用键在另一个字典中查找值并在循环内执行某种计算.考虑到PANDAS数据帧位于字典之上,必须有一种方法可以使用join / map / apply的组合来实现这一点,而无需实际连接内存中的两个数据集.
期望的输出:
desired_output = {"cost":{"0":29.74,"1":9.42,"2":9.42,"3":9.42,"4":9.48},"id":{"0":"K69","1":"K70","2":"K71","3":"K72","4":"K73"},"mark_up_id":{"0":"123","1":"456","2":"111","3":"123","4":"789"},"price":{"0":38.623338,"1":14.71875,"2":12.559686,"3":12.233754,"4":12.985704}}
do = pd.DataFrame(data=desired_output)
奖励积分:
解释接受的答案和……之间的区别
pb.loc[df['mark_up_id']]['mark_up'] * df.set_index('mark_up_id')['cost']
df.apply(lambda x : x['cost']*pb.loc[x['mark_up_id']],axis=1 )
返回错误说:
KeyError: ('the label [333] is not in the [index]', u'occurred at index 5')
解决方法:
尝试
df['price'] = df['mark_up_id'].map(pb['mark_up']) * df['cost']
你得到
cost id mark_up_id price
0 29.74 K69 123 38.623338
1 9.42 K70 456 14.718750
2 9.42 K71 111 12.559686
3 9.42 K72 123 12.233754
4 9.48 K73 789 12.985704
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。