微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – Pandas groupby – 将不同的函数应用于每组中的一半记录

我有类似下面的数据框,我有街道地址范围和街道名称的非唯一组合.

import pandas as pd
df=pd.DataFrame()
df['BlockRange']=['100-150','100-150','100-150','100-150','200-300','200-300','300-400','300-400','300-400']
df['Street']=['Main','Main','Main','Main','Spruce','Spruce','2nd','2nd','2nd']
df
  BlockRange  Street
0    100-150    Main
1    100-150    Main
2    100-150    Main
3    100-150    Main
4    200-300  Spruce
5    200-300  Spruce
6    300-400     2nd
7    300-400     2nd
8    300-400     2nd

在每个3’组’ – (100-150,Main),(200-300,Spruce)和(300-400,2nd)中 – 我希望每组中的一半记录得到一个等于块范围的中点和一半的记录使得块编号等于块范围的中点加1(将其放在街道的另一侧).

我知道这应该可以使用groupby转换来完成,但我无法弄清楚如何这样做(我在将函数应用于groupby键时遇到了麻烦,’BlockRange’).

我只能通过循环遍历每个唯一的组来获得我正在寻找的结果,这将在我的完整数据集上运行时需要一段时间.请参阅下面的我当前的解决方案和我正在寻找的最终结果:

groups=df.groupby(['BlockRange','Street'])

#Write function that calculates the mid point of the block range
def get_mid(x):
    block_nums=[int(y) for y in x.split('-')]
    return sum(block_nums)/len(block_nums)

final=pd.DataFrame()
for groupkey,group in groups:
    block_mid=get_mid(groupkey[0])
    halfway_point=len(group)/2
    group['Block']=0
    group.iloc[:halfway_point]['Block']=block_mid
    group.iloc[halfway_point:]['Block']=block_mid+1
    final=final.append(group)

final
  BlockRange  Street  Block
0    100-150    Main    125
1    100-150    Main    125
2    100-150    Main    126
3    100-150    Main    126
4    200-300  Spruce    250
5    200-300  Spruce    251
6    300-400     2nd    350
7    300-400     2nd    351
8    300-400     2nd    351

关于如何更有效地做到这一点的任何建议?也许使用groupby转换?

解决方法:

你可以使用apply自定义函数f:

def f(x):
    df = pd.DataFrame([y.split('-') for y in x['BlockRange'].tolist()])
    df = df.astype(int)
    block_nums = df.sum(axis=1) / 2
    x['Block'] = block_nums[0]
    halfway_point=len(x)/2
    x.iloc[halfway_point:, 2] = block_nums[0] + 1
    return x

print df.groupby(['BlockRange','Street']).apply(f)

  BlockRange  Street  Block
0    100-150    Main    125
1    100-150    Main    125
2    100-150    Main    126
3    100-150    Main    126
4    200-300  Spruce    250
5    200-300  Spruce    251
6    300-400     2nd    350
7    300-400     2nd    351
8    300-400     2nd    351  

时序:

In [32]: %timeit orig(df)
__main__:26: SettingWithcopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
__main__:27: SettingWithcopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
__main__:28: SettingWithcopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
1 loops, best of 3: 290 ms per loop

In [33]: %timeit new(df)
100 loops, best of 3: 10.2 ms per loop  

测试:

print df
df1 = df.copy()

def orig(df):
    groups=df.groupby(['BlockRange','Street'])

    #Write function that calculates the mid point of the block range
    def get_mid(x):
        block_nums=[int(y) for y in x.split('-')]
        return sum(block_nums)/len(block_nums)
    final=pd.DataFrame()

    for groupkey,group in groups:
        block_mid=get_mid(groupkey[0])
        halfway_point=len(group)/2
        group['Block']=0
        group.iloc[:halfway_point]['Block']=block_mid
        group.iloc[halfway_point:]['Block']=block_mid+1
        final=final.append(group)
    return final    

def new(df):
    def f(x):
        df = pd.DataFrame([y.split('-') for y in x['BlockRange'].tolist() ])
        df = df.astype(int)
        block_nums = df.sum(axis=1) / 2
        x['Block'] = block_nums[0]
        halfway_point=len(x)/2
        x.iloc[halfway_point:, 2] = block_nums[0] + 1
        return x

    return df.groupby(['BlockRange','Street']).apply(f)

print orig(df)
print new(df1)   

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐