我正在尝试生成一个Pandas DataFrame,其中date_range是一个索引.然后将其保存为CSV文件,以便日期以ISO-8601格式写入.
import pandas as pd
import numpy as np
from pandas import DataFrame, Series
NumberOfSamples = 10
dates = pd.date_range('20130101',periods=NumberOfSamples,freq='90S')
df3 = DataFrame(index=dates)
df3.to_csv('dates.txt', header=False)
date.txt的当前输出是:
2013-01-01 00:00:00
2013-01-01 00:01:30
2013-01-01 00:03:00
2013-01-01 00:04:30
...................
我试图让它看起来像:
2013-01-01T00:00:00Z
2013-01-01T00:01:30Z
2013-01-01T00:03:00Z
2013-01-01T00:04:30Z
....................
解决方法:
在索引上使用datetime.strftime和调用map:
In [72]:
NumberOfSamples = 10
import datetime as dt
dates = pd.date_range('20130101',periods=NumberOfSamples,freq='90S')
df3 = pd.DataFrame(index=dates)
df3.index = df3.index.map(lambda x: dt.datetime.strftime(x, '%Y-%m-%dT%H:%M:%sZ'))
df3
Out[72]:
Empty DataFrame
Columns: []
Index: [2013-01-01T00:00:00Z, 2013-01-01T00:01:30Z, 2013-01-01T00:03:00Z, 2013-01-01T00:04:30Z, 2013-01-01T00:06:00Z, 2013-01-01T00:07:30Z, 2013-01-01T00:09:00Z, 2013-01-01T00:10:30Z, 2013-01-01T00:12:00Z, 2013-01-01T00:13:30Z]
或者在我看来更好(感谢@unutbu)你可以将格式说明符传递给to_csv:
df3.to_csv('dates.txt', header=False, date_format='%Y-%m-%dT%H:%M:%sZ')
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。