微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 使用.iterrows()以更干净的方式遍历pandas dateframe中的行,并跟踪特定值之间的行

我在python 2.7中有一个pandas日期帧,我想迭代这些行并获得两种类型事件之间的时间以及中间其他类型事件的计数(给定某些条件).

我的数据是pandas.DateFrame,如下所示:

     Time  Var1  EvntType  Var2
0    15    1     2         17
1    19    1     1         45
2    21    6     2         43
3    23    3     2         65
4    25    0     2         76 #this one should be skipped
5    26    2     2         35
6    28    3     2         25
7    31    5     1         16
8    33    1     2         25
9    36    5     1         36
10   39    1     2         21

我想忽略Var1等于0的行,然后在类型1的事件之间计算类型1的事件和类型2的事件(除了Var1 == 0)之间的时间.所以在上面的例子中:

Start_time: 19, Time_inbetween: 12, Event_count: 4
Start_time: 31, Time_inbetween: 5, Event_count: 1

我是通过以下方式做到这一点的:

i=0
eventCounter = 0
lastStartTime = 0
length = data[data['EvntType']==1].shape[0]
results = np.zeros((length,3),dtype=int)
for row in data[data['Var1'] > 0].iterrows():
    myRow = row[1]
    if myRow['EvntType'] == 1:
        results[i,0] = lastStartTime
        results[i,1] = myRow['Time'] - lastStartTime
        results[i,2] = eventCounter
        lastStartTime = myRow['Time']
        eventCounter = 0
        i += 1
    else:
        eventCounter += 1

这给了我想要的结果:

>>> results[1:]
array([[19, 12,  4],
       [31,  5,  1]])

但这似乎真的很规避并且需要很长时间才能使用大型数据帧.我怎样才能改善这个?

解决方法:

你可以使用以下方法删除Var1等于0的行:

df = df.loc[df['Var1'] != 0]

然后创建一个布尔掩码,其中EvntType为1时为True:

mask = df['EvntType']==1
# 0     False
# 1      True
# ...
# 9      True
# 10    False
# Name: EvntType, dtype: bool

找到与掩码为True的行相关联的Times:

times = df.loc[mask, 'Time']
# 1    19
# 7    31
# 9    36
# Name: Time, dtype: int64

并且还找到掩码为True的序数索引:

idx = np.flatnonzero(mask)
# array([1, 6, 8])

start_times是时间[: – 1]中的所有值.

In [56]: times[:-1]
Out[56]: 
1    19
7    31
Name: Time, dtype: int64

time_inbetween是时间的差异,np.diff(次)

In [55]: np.diff(times)
Out[55]: array([12,  5])

event_count是idx中的差异,减去1.

In [57]: np.diff(idx)-1
Out[57]: array([4, 1])
import numpy as np
import pandas as pd

df = pd.DataFrame({'EvntType': [2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2],
                   'Time': [15, 19, 21, 23, 25, 26, 28, 31, 33, 36, 39],
                   'Var1': [1, 1, 6, 3, 0, 2, 3, 5, 1, 5, 1],
                   'Var2': [17, 45, 43, 65, 76, 35, 25, 16, 25, 36, 21]})

# Remove rows where Var1 equals 0
df = df.loc[df['Var1'] != 0]

mask = df['EvntType']==1
times = df.loc[mask, 'Time']
idx = np.flatnonzero(mask)

result = pd.DataFrame(
    {'start_time': times[:-1],
     'time_inbetween': np.diff(times),
     'event_count': np.diff(idx)-1})

print(result)

产量

   event_count  start_time  time_inbetween
1            4          19              12
7            1          31               5

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐