我正在使用包含几个表的postgres数据库.目标是从获得的查询结果中检索格式化的JSON.我创建了这个python脚本从表(测试用例)中获取数据集,以便操作查询结果:
import psycopg2
import json
from time import sleep
from config import config
def main():
conn = None
try:
params = config()
conn = psycopg2.connect(**params)
cur = conn.cursor()
cur.execute("select * from location")
row = cur.fetchone()
while row is not None:
print(row)
#do field rename, merge(log, lat) and obtained JSON here
sleep(0.3)
row = cur.fetchone()
cur.close()
except (Exception, psycopg2.DatabaseError) as error:
print(error)
finally:
if conn is not None:
conn.close()
if __name__ == '__main__':
main()
为了使我的问题清楚,我在这里制作了一个简化的场景,用3个表格表示手头的任务,如下所示.
environment
╔════════╦═══════════╦══════╦══════╗
║ env_id ║ placem_id ║ humd ║ wind ║
╠════════╬═══════════╬══════╬══════╣
║ 104║ 4 ║ 48 ║ 119 ║
║ 68 ║ 9 ║ 39 ║ 141 ║
╚════════╩═══════════╩══════╩══════╝
placement
╔═══════════╦════════╦═══════════════╦══════════════════════════╗
║ placem_id ║ loc_id ║ description ║ date ║
╠═══════════╬════════╬═══════════════╬══════════════════════════╣
║ 4 ║ 64 ║ description_1 ║ 2019-03-12T20:40:35.967Z ║
║ 7 ║ 5 ║ description_2 ║ 2019-03-12T20:56:51.319Z ║
╚═══════════╩════════╩═══════════════╩══════════════════════════╝
location
╔════════╦═══════════╦═══════════╦════════════════════╗
║ loc_id ║ log ║ lat ║ address ║
╠════════╬═══════════╬═══════════╬════════════════════╣
║ 64 ║ 13.3986 ║ 52.5547 ║ Bosebrucke Einkauf ║
║ 71 ║ 21.150122 ║ -6.607044 ║ Charlotte Court ║
╚════════╩═══════════╩═══════════╩════════════════════╝
这就是我想要实现的目标:
>从数据库中检索记录
>在JSON名称/值中适当地重命名一些字段(例如,humd成为relativeHumidity和windto windSpeed
>将log和lat字段合并为单个JSON值,如坐标[log,lat]
因此返回的JSON采用以下形式:
{
"relativeHumidity": 48,
"windSpeed": 119,
"address": "Bosebrucke Einkauf",
"location": {
"coordinates": [13.3986, 52.5547]
}
}
虽然这个问题可能看似重复,但我尝试了许多类似问题的建议,例如here,但这些都没有实际起作用.
那里的任何人都可以提供指南吗?
解决方法:
我认为使用functions-json
应该相对容易:
select
json_agg(to_json(d))
from (
select
e.humd as "relativeHumidity",
e.wind as "windSpeed",
l.address,
json_build_object(
'coordinates',
json_build_array(l.log, l.lat)
) as location
from environment as e
inner join placement as p on
p.placem_id = e.placem_id
inner join location as l on
l.loc_id = p.loc_id
) as d
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。