尽管有索引,并且id为主键,下面的查询大约需要15秒才能返回数据.
select id from my_table order by insert_date offset 0 limit 1
解释分析如下
"Limit (cost=1766417.72..1766417.72 rows=1 width=12) (actual time=32479.440..32479.441 rows=1 loops=1)" " -> Sort (cost=1766417.72..1797117.34 rows=12279848 width=12) (actual time=32479.437..32479.437 rows=1 loops=1)" " Sort Key: insert_date" " Sort Method: top-N heapsort Memory: 25kB" " -> Seq Scan on my_table (cost=0.00..1705018.48 rows=12279848 width=12) (actual time=0.006..21338.401 rows=12108916 loops=1)" "Total runtime: 32479.476 ms"
我的表几乎没有其他专栏.但insert_date的类型是
insert_date timestamp without time zone NOT NULL DEFAULT Now(),
我在该特定日期列上有一个索引
CREATE INDEX my_table_insert_date_indx ON my_table USING btree (insert_date) TABLESPACE somexyz_idx_ts;
shared_buffers = more than 1GB ## just for an example temp_buffers = more than 1GB work_mem = more than 1GB maintenance_work_mem = more than 1GB dynamic_shared_memory_type = posix default_statistics_target = 10000 autovacuum = on random_page_cost = 2.0 cpu_index_tuple_cost = 0.0005
我现在正在使用postgres 9.3.
更新::
我刚刚运行了以下查询:
select insert_date,count(*) from my_table group by insert_date
而结果中的前几位是:
"2015-04-02 00:00:00";3718104 "2015-04-03 00:00:00";6410253 "2015-04-04 00:00:00";538247 "2015-04-05 00:00:00";1228877 "2015-04-06 00:00:00";131248
我在那张桌子上有大约1200万条记录.而上述数字几乎接近总数.
解决方法
使用Postgresql 9.3和9.4,我的机器上的查询运行速度提高了大约160000倍.我的机器没什么特别的.
-- From Postgresql 9.4; 9.3 is similar. show shared_buffers; -- 128MB show temp_buffers; -- 8MB show work_mem; -- 4MB show maintenance_work_mem; -- 64MB show dynamic_shared_memory_type; -- posix show default_statistics_target; -- 100 show autovacuum; -- on show random_page_cost; -- 4 show cpu_index_tuple_cost; -- 0.005
制备
让我们建一张桌子. (你应该在你的问题中这样做.)
create table my_table ( id serial primary key,insert_date timestamp not null ); -- Round numbers of rows. insert into my_table(insert_date) select timestamp '2015-04-02 00:00:00' from generate_series(1,3000000) n; insert into my_table(insert_date) select timestamp '2015-04-03 00:00:00' from generate_series(1,6000000) n; insert into my_table(insert_date) select timestamp '2015-04-04 00:00:00' from generate_series(1,500000) n; insert into my_table(insert_date) select timestamp '2015-04-05 00:00:00' from generate_series(1,1200000) n; insert into my_table(insert_date) select timestamp '2015-04-06 00:00:00' from generate_series(1,131000) n;
创建索引并更新统计信息.
create index on my_table (insert_date); analyze my_table;
Postgresql 9.4
explain analyze select id from my_table order by insert_date offset 0 limit 1;
"Limit (cost=0.43..0.48 rows=1 width=12) (actual time=0.014..0.014 rows=1 loops=1)" " -> Index Scan using my_table_insert_date_idx on my_table (cost=0.43..540656.27 rows=11200977 width=12) (actual time=0.012..0.012 rows=1 loops=1)" "Planning time: 0.195 ms" "Execution time: 0.032 ms"
Postgresql 9.3
explain analyze select id from my_table order by insert_date offset 0 limit 1;
"Limit (cost=0.43..0.47 rows=1 width=12) (actual time=0.058..0.059 rows=1 loops=1)" " -> Index Scan using my_table_insert_date_idx on my_table (cost=0.43..339814.36 rows=10830995 width=12) (actual time=0.057..0.057 rows=1 loops=1)" "Total runtime: 0.098 ms"
您的查询
select id from my_table order by insert_date offset 0 limit 1;
是不确定的.根据ORDER BY子句,有300万行具有最低的insert_date(首先出现的日期).你挑选了300万中的一个. Postgresql不保证你每次都会得到相同的id.
如果你不关心它返回的300万个ID中的哪一个,你可以用不同的方式表达查询.但我不认为表达不同会给你160k倍的加速.
您可以针对特定查询更改您包含的某些设置.所以你可以做这样的事情.
-- Don't commit or rollback . . . begin transaction; set local work_mem = '8 MB'; explain analyze select id from my_table order by insert_date offset 0 limit 1; -- displays the result.
手动提交或回滚.
commit;
您的work_mem设置返回到服务器启动时设置的值.
show work_mem; -- 4MB
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。