微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

一致性Hash原理与实现

Redis集群的使用

我们在使用Redis的过程中,为了保证Redis的高可用,我们一般会对Redis做主从复制,组成Master-Master或者Master-Slave的形式,进行数据的读写分离

 @H_404_9@

当缓存数据量超过一定的数量时,我们就要对Redis集群做分库分表的操作。

来个栗子,我们有一个电商平台,需要使用Redis存储商品的图片资源,存储的格式为键值对,key值为图片名称,Value为该图片所在的文件服务器的路径,我们需要根据文件名,查找到文件所在的文件服务器上的路径,我们的图片数量大概在3000w左右,按照我们的规则进行分库,规则就是随机分配的,我们以每台服务器存500w的数量,部署12台缓存服务器,并且进行主从复制
@H_404_9@

由于我们定义的规则是随机的,所以我们的数据有可能存储在任何一组Redis中,比如我们需要查询"product.png"的图片,由于规则的随机性,我们需要遍历所有Redis服务器,才能查询得到。这样的结果显然不是我们所需要的。所以我们会想到按某一个字段值进行Hash值、取模。所以我们就看看使用Hash的方式是怎么进行的。

使用Hash的Redis集群

如果我们使用Hash的方式,每一张图片在进行分库的时候都可以定位到特定的服务器
@H_404_9@

从上图中,我们需要查询的是图product.png,由于我们有6台主服务器,所以计算的公式为:hash(product.png) % 6 = 5,我们就可以定位到是5号主从,这们就省去了遍历所有服务器的时间,从而大大提升了性能

使用Hash时遇到的问题

在上述hash取模的过程中,我们虽然不需要对所有Redis服务器进行遍历而提升了性能。但是,使用Hash算法缓存时会出现一些问题,Redis服务器变动时,所有缓存的位置都会发生改变
比如,现在我们的Redis缓存服务器增加到了8台,我们计算的公式从hash(product.png) % 6 = 5变成了hash(product.png) % 8 = ? 结果肯定不是原来的5了。
再者,6台的服务器集群中,当某个主从群出现故障时,无法进行缓存,那我们需要把故障机器移除,所以取模数又会从6变成了5。我们计算的公式也会变化。

由于上面hash算法是使用取模来进行缓存的,为了规避上述情况,Hash一致性算法就诞生了~~

一致性Hash算法原理

一致性Hash算法也是使用取模的方法,不过,上述的取模方法是对服务器的数量进行取模,而一致性的Hash算法是对2的32方取模。即,一致性Hash算法将整个Hash空间组织成一个虚拟的圆环,Hash函数的值空间为0 ~ 2^32 - 1(一个32位无符号整型),整个哈希环如下:

@H_404_9@

 

 

整个圆环以顺时针方向组织,圆环正上方的点代表0,0点右侧的第一个点代表1,以此类推。
第二步,我们将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台服务器就确定在了哈希环的一个位置上
@H_404_9@

 

 现在,我们使用以下算法定位数据访问到相应的服务器:

将数据Key使用相同的函数Hash计算出哈希值,并确定此数据在环上的位置,从此位置沿环顺时针查找,遇到的服务器就是其应该定位到的服务器。

例如,现在有ObjectA,ObjectB,ObjectC三个数据对象,经过哈希计算后,在环空间上的位置如下:

@H_404_9@

 

 根据一致性算法,Object -> NodeA,ObjectB -> NodeB,ObjectC -> NodeC

一致性Hash算法的容错性和可扩展性

 

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐