微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

X2Paddle 安装方式一推荐安装方式二安装方式三TensorFlowCaffeONNX参数选项 深度学习模型转换工具

程序名称:X2Paddle 安装方式一推荐安装方式二安装方式三TensorFlowCaffeONNX参数选项

授权协议: Apache

操作系统: 跨平台

开发语言: Python

X2Paddle 安装方式一推荐安装方式二安装方式三TensorFlowCaffeONNX参数选项 介绍

X2Paddle支持将其余深度学习框架训练得到的模型,转换至PaddlePaddle模型。

环境依赖

python >= 3.5
paddlepaddle >= 1.5.0

以下依赖只需对应安装自己需要的即可
转换tensorflow模型 : tensorflow == 1.14.0
转换caffe模型 : caffe == 1.0.0
转换onnx模型 : onnx == 1.5.0 pytorch == 1.1.0

安装

安装方式一(推荐)

使用最新的代码版本,可使用如下方式进行安装

pip install git+https://github.com/PaddlePaddle/X2Paddle.git@develop

安装方式二

我们会定期更新pip源上的x2paddle版本

pip install x2paddle

安装方式三

git clone https://github.com/PaddlePaddle/X2Paddle.git
cd X2Paddle
git checkout develop
python setup.py install

使用方法

TensorFlow

x2paddle --framework=tensorflow --model=tf_model.pb --save_dir=pd_model

Caffe

x2paddle --framework=caffe --prototxt=deploy.proto --weight=deploy.caffemodel --save_dir=pd_model

ONNX

x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model

参数选项

参数
\--framework 源模型类型 (tensorflow、caffe、onnx)
\--prototxt 当framework为caffe时,该参数指定caffe模型的proto文件路径
\--weight 当framework为caffe时,该参数指定caffe模型的参数文件路径
\--save_dir 指定转换后的模型保存目录路径
\--model 当framework为tensorflow/pmmx时,该参数指定tensorflow的pb模型文件或onnx模型路径
\--caffe_proto [可选]由caffe.proto编译成caffe_pb2.py文件的存放路径,当存在自定义Layer时使用,认为None

使用转换后的模型

转换后的模型包括model_with_code和inference_model两个目录。
model_with_code中保存了模型参数,和转换后的python模型代码
inference_model中保存了序列化的模型结构和参数,可直接使用paddle的接口进行加载,见load_inference_model

X2Paddle 安装方式一推荐安装方式二安装方式三TensorFlowCaffeONNX参数选项 官网

https://www.oschina.net/action/visit/ad?id=1091

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐