微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Petastorm <strong>Petastorm 的特性</strong><strong>Petastorm 架构</strong> 深度学习分布式训练库

程序名称:Petastorm <strong>Petastorm 的特性</strong><strong>Petastorm 架构</strong>

授权协议: Apache-2.0

操作系统: Linux

开发语言: Python

Petastorm <strong>Petastorm 的特性</strong><strong>Petastorm 架构</strong> 介绍

Petastorm 是由 Uber ATG(Advanced Technologies Group) 开发的开源数据访问库。这个库可以直接基于数 TB
Parquet 格式的数据集进行单机或分布式训练和深度学习模型评估。Petastorm 支持基于 Python 的机器学习框架,如
Tensorflow、Pytorch 和 PySpark,也可以直接用在 Python 代码中。

Petastorm 的特性

Petastorm
提供了各种特性来支持自动驾驶算法的训练,包括行过滤、数据分片、shuffle、对字段子集的访问,以及对时间序列数据(n-gram)的支持

典型数据集的结构包括

  • 自动驾驶汽车测试运行期间收集的传感器数据的多个列,包括摄像头、激光定位器和雷达。

  • 手动生成标签,作为行的字段进行存储。

行数据按照时间顺序排序,并按照汽车的测试运行进行分组,行组大小通常在 30 到 100 范围内。

Petastorm 架构

  • 通过单数据模式定义进行数据的编码和解码。

  • 为 ML 框架和纯 Python 代码提供可用的高数据加载带宽。

  • 将 Apache Spark 作为分布式集群计算框架来生成数据集。

  • 与 Python、ML 平台无关的 Petastorm 核心组件的实现。

  • 呈现给 Tensorflow 和 PyTorch 框架的原生接口。

  • etl 包实现了生成数据集的功能

  • Reader 是训练和计算代码使用的主要数据加载引擎。Reader 使用 Python 实现,不依赖任何 ML 框架(Tensorflow、Pytorch),并且可以通过 Python 代来实例化和使用。

  • 为 Tensorflow 和 PyTorch 提供适配器。

  • Unischema 可以被数据集生成和数据加载代码引用。


Petastorm 提供了支持数据集生成和读取的组件。Unischema 定义了可供两者使用的公共数据模式。

内容摘自AI前线

Petastorm <strong>Petastorm 的特性</strong><strong>Petastorm 架构</strong> 官网

https://github.com/uber/petastorm

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐