微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

DStream以及基本工作原理

Spark Streaming基本工作原理

Spark Streaming内部的基本工作原理如下:接收实时输入数据流,然后将数据拆分成多个batch,比如每收集1秒的数据封装为一个batch,然后将每个batch交给Spark的计算引擎进行处理,最后会生产出一个结果数据流,其中的数据,也是由一个一个的batch所组成的。

在这里插入图片描述

DStream

Spark Streaming提供了一种高级的抽象,叫做DStream,英文全称为discretized Stream,中文翻译为“离散流”,它代表了一个持续不断的数据流。DStream可以通过输入数据源来创建,比如Kafka、Flume和Kinesis;也可以通过对其他DStream应用高阶函数来创建,比如map、reduce、join、window。

DStream的内部,其实一系列持续不断产生的RDD。RDD是Spark Core的核心抽象,即,不可变的,分布式的数据集。DStream中的每个RDD都包含了一个时间段内的数据。

在这里插入图片描述

对DStream应用的算子,比如map,其实在底层会被翻译为对DStream中每个RDD的操作。比如对一个DStream执行一个map操作,会产生一个新的DStream。但是,在底层,其实其原理为,对输入DStream中每个时间段的RDD,都应用一遍map操作,然后生成的新的RDD,即作为新的DStream中的那个时间段的一个RDD。底层的RDD的transformation操作,其实,还是由Spark Core的计算引擎来实现的。Spark Streaming对Spark Core进行了一层封装,隐藏了细节,然后对开发人员提供了方便易用的高层次的API。

在这里插入图片描述


了解更多大数据面试题欢迎关注小编大数据培训技术专栏!

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐