Spark-Core
一 Driver和Executor通信
Driver相当于Client,Executor相当于Server
- Driver代码
package com.zxy.socket
import java.io.OutputStream
import java.net.socket
object Driver {
def main(args: Array[String]): Unit = {
//连接服务器
val client: Socket = new Socket("localhost",9999)
//发送数据
val out: OutputStream = client.getoutputStream
out.write(2)
out.flush()
out.close()
client.close()
}
}
- Executor代码
package com.zxy.socket
import java.io.InputStream
import java.net.{ServerSocket, Socket}
object Executor {
def main(args: Array[String]): Unit = {
//启动服务器,接受数据
val server: ServerSocket = new ServerSocket(9999)
println("服务器启动,等待数据")
//等待客户端连接接收数据
val client: Socket = server.accept()
val in: InputStream = client.getInputStream
val i: Int = in.read()
println(s"接收到客户端数据 + ${i}")
client.close()
server.close()
}
}
先启动服务端Executor,等待数据
启动客户端Driver,建立连接发送数据
二 案例引入Spark三大数据结构
1 案例
修改以上案例,使用两个服务端Executor接收数据
将Task中的数据分开计算
package com.zxy.socket
import java.io.{InputStream, ObjectInputStream}
import java.net.{ServerSocket, Socket}
object Executor1 {
def main(args: Array[String]): Unit = {
//启动服务器,接受数据
val server: ServerSocket = new ServerSocket(8888)
println("服务器启动,等待数据")
//等待客户端连接接收数据
val client: Socket = server.accept()
val in: InputStream = client.getInputStream
val TaskOBJ2: ObjectInputStream = new ObjectInputStream(in)
val task: SubTask = TaskOBJ2.readobject().asInstanceOf[SubTask]
val ints: List[Int] = task.computer()
println(s"计算[8888]后的结果是: ${ints}")
TaskOBJ2.close()
client.close()
server.close()
}
}
package com.zxy.socket
import java.io.{InputStream, ObjectInputStream}
import java.net.{ServerSocket, Socket}
object Executor2 {
def main(args: Array[String]): Unit = {
//启动服务器,接受数据
val server: ServerSocket = new ServerSocket(9999)
println("服务器启动,等待数据")
//等待客户端连接接收数据
val client: Socket = server.accept()
val in: InputStream = client.getInputStream
val TaskOBJ1: ObjectInputStream = new ObjectInputStream(in)
val task: SubTask = TaskOBJ1.readobject().asInstanceOf[SubTask]
val ints: List[Int] = task.computer()
println(s"计算[9999]后的结果是: ${ints}")
TaskOBJ1.close()
client.close()
server.close()
}
}
package com.zxy.socket
import java.io.{ObjectOutputStream, OutputStream}
import java.net.socket
object Driver {
def main(args: Array[String]): Unit = {
//连接服务器
val client1: Socket = new Socket("localhost",8888)
val client2: Socket = new Socket("localhost",9999)
val task: Task = new Task()
//server1发送数据
val out1: OutputStream = client1.getoutputStream
val TaskOBJ1: ObjectOutputStream = new ObjectOutputStream(out1)
val subTask1 = new SubTask()
subTask1.logic = task.logic
subTask1.datas = task.datas.take(2)
TaskOBJ1.writeObject(subTask1)
TaskOBJ1.flush()
TaskOBJ1.close()
client1.close()
//server2发送数据
val out2: OutputStream = client2.getoutputStream
val TaskOBJ2: ObjectOutputStream = new ObjectOutputStream(out2)
val subTask2 = new SubTask()
subTask2.logic = task.logic
subTask2.datas = task.datas.takeRight(2)
TaskOBJ2.writeObject(subTask2)
TaskOBJ2.flush()
TaskOBJ2.close()
client2.close()
println("数据发送完毕")
}
}
package com.zxy.socket
class Task extends Serializable {
val datas = List(1,2,3,4)
val logic:Int => Int = _ * 2
}
package com.zxy.socket
class SubTask extends Serializable {
//初始值
var datas:List[Int] = _
var logic:Int => Int = _
//计算
def computer()={
datas.map(logic)
}
}
-
执行效果
先启动Executor1,Executor2;
再启动Driver
Executor1:
服务器启动,等待数据
计算[8888]后的结果是: List(2, 4)
Executor2:
服务器启动,等待数据
计算[9999]后的结果是: List(6, 8)
Driver:
数据发送完毕
2 Spark三大数据结构
Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,
用于处理不同的应用场景。三大数据结构分别是:
> RDD: 弹性分布式数据集
> 累加器:分布式共享只写变量
> 广播变量:分布式共享只读变量
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。