package sql2 import org.apache.spark.sql.SparkSession object Spark2Join { def main(args: Array[String]): Unit = { val spark = SparkSession.builder().appName("joinTest") .master("local[*]") .getorCreate() import spark.implicits._ val lines = spark.createDataset(List("1,laozhoa,china", "2,laoduan,usa", "3,laoyang,jp")) //对数据进行整理 val tpDs = lines.map(line => { val fields = line.split(",") val id = fields(0).toLong val name = fields(1) val nationCode = fields(2) (id, name, nationCode) }) val df1 = tpDs.toDF("id", "name", "nation") val nations = spark.createDataset(List("china,中国", "usa,美国")) //对数据进行整理 val ndataset = nations.map(l => { val fields = l.split(",") val ename = fields(0) val cname = fields(1) (ename, cname) }) val df2 = ndataset.toDF("ename","cname") /* 第一种基于dataFrame创建视图的方式,通过写sql方式将两者相结合 */ df1.createTempView("v_users") df2.createTempView("v_nations") val rs = spark.sql("select name,cname from v_users left join v_nations on nation = ename") rs.show() /* 第二种方式: 基于dataset,默认是innerjoin */ df1.join(df2,$"nation" === $"ename","left_outer").show() spark.stop() } }
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。