背景
本文基于delta 0.7.0
spark 3.0.1
spark 3.x引入了动态分区裁剪,在 spark 的动态分区裁剪上(Dynamic partition pruning)-逻辑计划我们提到在逻辑计划阶段会加入DynamicPruningSubquery,今天我们分析一下在物理阶段怎么对DynamicPruningSubquery进行优化以及实现的
分析
直接转到PlanDynamicPruningFilters的apply方法:
override def apply(plan: SparkPlan): SparkPlan = {
if (!sqlConf.get.dynamicPartitionPruningEnabled) {
return plan
}
plan transformAllExpressions {
case DynamicPruningSubquery(
value, buildplan, buildKeys, broadcastKeyIndex, onlyInbroadcast, exprId) =>
val sparkPlan = QueryExecution.createSparkPlan(
sparkSession, sparkSession.sessionState.planner, buildplan)
// Using `sparkPlan` is a little hacky as it is based on the assumption that this rule is
// the first to be applied (apart from `InsertAdaptiveSparkPlan`).
val canReuseExchange = sqlConf.get.exchangeReuseEnabled && buildKeys.nonEmpty &&
plan.find {
case broadcastHashJoinExec(_, _, _, BuildLeft, _, left, _) =>
left.sameResult(sparkPlan)
case broadcastHashJoinExec(_, _, _, buildright, _, _, right) =>
right.sameResult(sparkPlan)
case _ => false
}.isDefined
if (canReuseExchange) {
val mode = broadcastMode(buildKeys, buildplan)
val executedplan = QueryExecution.prepareExecutedplan(sparkSession, sparkPlan)
// plan a broadcast exchange of the build side of the join
val exchange = broadcastExchangeExec(mode, executedplan)
val name = s"dynamicpruning#${exprId.id}"
// place the broadcast adaptor for reusing the broadcast results on the probe side
val broadcastValues =
SubquerybroadcastExec(name, broadcastKeyIndex, buildKeys, exchange)
DynamicPruningExpression(InSubqueryExec(value, broadcastValues, exprId))
} else if (onlyInbroadcast) {
// it is not worthwhile to execute the query, so we fall-back to a true literal
DynamicPruningExpression(Literal.TrueLiteral)
} else {
// we need to apply an aggregate on the buildplan in order to be column pruned
val alias = Alias(buildKeys(broadcastKeyIndex), buildKeys(broadcastKeyIndex).toString)()
val aggregate = Aggregate(Seq(alias), Seq(alias), buildplan)
DynamicPruningExpression(expressions.InSubquery(
Seq(value), ListQuery(aggregate, childOutputs = aggregate.output)))
}
}
}
- 如果没有开启动态分区裁剪,则直接跳过
QueryExecution.createSparkPlan( sparkSession, sparkSession.sessionState.planner, buildplan)
通过逻辑计划构造物理计划- 判断是否reuseExchange,如果spark.sql.exchange.reuse配置为true,且存在join的是broadcastHashjoin,而且计算结果和要进行过滤的物理计划的结果一样,则进行下一步,
- 进行物理计划执行前的准备, 得到executedplan
- 构建broadcastExchangeExec,broadcastValues,InSubqueryExec,DynamicPruningExpression,broadcastExchangeExec内部就是进行spark的broadcast操作
注意:这里的broadcastExchangeExec会在ReuseExchange规则中被优化, 最终会被broadcastQueryStageExec调用,从而公用同一个broacast的值
- 如果以上不满足,默认DynamicPruningExpression(Literal.TrueLiteral),也就是不会进行裁剪
- 如果不是broadcastHashjoin,但是能够加速,则按照需要过滤的key做一次聚合,之后再组成DynamicPruningExpression
至此动态裁剪的物理计划优化就分析完了
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。