微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

查看Spark与Hadoop等其他组件的兼容版本

安装与Spark相关的其他组件的时候,例如JDK,Hadoop,Yarn,Hive,Kafka等,要考虑到这些组件和Spark的版本兼容关系。这个对应关系可以在Spark源代码的pom.xml文件中查看。

一、 下载Spark源代码

打开网址https://github.com/apache/spark,例如选择v2.4.0-rc5版本,再点击“Clone or download”按钮,点击下方的“Download ZIP”进行下载。

 

 

二、查看pom.xml文件
将下载的源代码压缩包解压后,打开里面的pom.xml文件,查看properties标签内各配置项,里面有列出其他组件的兼容版本信息,例如<hadoop.version>2.6.5</hadoop.version>表示hadoop版本为2.6.5。如下:

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
    <java.version>1.8</java.version>
    <maven.compiler.source>${java.version}</maven.compiler.source>
    <maven.compiler.target>${java.version}</maven.compiler.target>
    <maven.version>3.5.4</maven.version>
    <sbt.project.name>spark</sbt.project.name>
    <slf4j.version>1.7.16</slf4j.version>
    <log4j.version>1.2.17</log4j.version>
    <hadoop.version>2.6.5</hadoop.version>
    <protobuf.version>2.5.0</protobuf.version>
    <yarn.version>${hadoop.version}</yarn.version>
    <flume.version>1.6.0</flume.version>
    <zookeeper.version>3.4.6</zookeeper.version>
    <curator.version>2.6.0</curator.version>
    <hive.group>org.spark-project.hive</hive.group>
    <!-- Version used in Maven Hive dependency -->
    <hive.version>1.2.1.spark2</hive.version>
    <!-- Version used for internal directory structure -->
    <hive.version.short>1.2.1</hive.version.short>
    <derby.version>10.12.1.1</derby.version>
    <parquet.version>1.10.0</parquet.version>
    <orc.version>1.5.2</orc.version>
    <orc.classifier>nohive</orc.classifier>
    <hive.parquet.version>1.6.0</hive.parquet.version>
    <jetty.version>9.3.24.v20180605</jetty.version>
    <javaxservlet.version>3.1.0</javaxservlet.version>
    <chill.version>0.9.3</chill.version>
    <ivy.version>2.4.0</ivy.version>
    <oro.version>2.0.8</oro.version>
    <codahale.metrics.version>3.1.5</codahale.metrics.version>
    <avro.version>1.8.2</avro.version>
    <avro.mapred.classifier>hadoop2</avro.mapred.classifier>
    <aws.kinesis.client.version>1.8.10</aws.kinesis.client.version>
    <!-- Should be consistent with Kinesis client dependency -->
    <aws.java.sdk.version>1.11.271</aws.java.sdk.version>
    <!-- the producer is used in tests -->
    <aws.kinesis.producer.version>0.12.8</aws.kinesis.producer.version>
    <!--  org.apache.httpcomponents/httpclient-->
    <commons.httpclient.version>4.5.6</commons.httpclient.version>
    <commons.httpcore.version>4.4.10</commons.httpcore.version>
    <!--  commons-httpclient/commons-httpclient-->
    <httpclient.classic.version>3.1</httpclient.classic.version>
    <commons.math3.version>3.4.1</commons.math3.version>
    <!-- managed up from 3.2.1 for SPARK-11652 -->
    <commons.collections.version>3.2.2</commons.collections.version>
    <scala.version>2.11.12</scala.version>
    <scala.binary.version>2.11</scala.binary.version>
    <codehaus.jackson.version>1.9.13</codehaus.jackson.version>
    <fasterxml.jackson.version>2.6.7</fasterxml.jackson.version>
    <fasterxml.jackson.databind.version>2.6.7.1</fasterxml.jackson.databind.version>
    <snappy.version>1.1.7.1</snappy.version>
    <netlib.java.version>1.1.2</netlib.java.version>
    <calcite.version>1.2.0-incubating</calcite.version>
    <commons-codec.version>1.10</commons-codec.version>
    <commons-io.version>2.4</commons-io.version>
    <!-- org.apache.commons/commons-lang/-->
    <commons-lang2.version>2.6</commons-lang2.version>
    <!-- org.apache.commons/commons-lang3/-->
    <commons-lang3.version>3.5</commons-lang3.version>
    <datanucleus-core.version>3.2.10</datanucleus-core.version>
    <janino.version>3.0.9</janino.version>
    <jersey.version>2.22.2</jersey.version>
    <joda.version>2.9.3</joda.version>
    <jodd.version>3.5.2</jodd.version>
    <jsr305.version>1.3.9</jsr305.version>
    <libthrift.version>0.9.3</libthrift.version>
    <antlr4.version>4.7</antlr4.version>
    <jpam.version>1.1</jpam.version>
    <selenium.version>2.52.0</selenium.version>
    <!--
    Managed up from older version from Avro; sync with jackson-module-paranamer dependency version
    -->
    <paranamer.version>2.8</paranamer.version>
    <maven-antrun.version>1.8</maven-antrun.version>
    <commons-crypto.version>1.0.0</commons-crypto.version>
    <!--
    If you are changing Arrow version specification, please check ./python/pyspark/sql/utils.py,
    ./python/run-tests.py and ./python/setup.py too.
    -->
    <arrow.version>0.10.0</arrow.version>

    <test.java.home>${java.home}</test.java.home>
    <test.exclude.tags></test.exclude.tags>
    <test.include.tags></test.include.tags>

    <!-- Package to use when relocating shaded classes. -->
    <spark.shade.packageName>org.spark_project</spark.shade.packageName>

    <!-- Modules that copy jars to the build directory should do so under this location. -->
    <jars.target.dir>${project.build.directory}/scala-${scala.binary.version}/jars</jars.target.dir>

    <!-- Allow modules to enable / disable certain build plugins easily. -->
    <build.testJarPhase>prepare-package</build.testJarPhase>
    <build.copyDependenciesPhase>none</build.copyDependenciesPhase>

    <!--
      Dependency scopes that can be overridden by enabling certain profiles. These profiles are
      declared in the projects that build assemblies.

      For other projects the scope should remain as "compile", otherwise they are not available
      during compilation if the dependency is transivite (e.g. "graphx/" depending on "core/" and
      needing Hadoop classes in the classpath to compile).
    -->
    <flume.deps.scope>compile</flume.deps.scope>
    <hadoop.deps.scope>compile</hadoop.deps.scope>
    <hive.deps.scope>compile</hive.deps.scope>
    <orc.deps.scope>compile</orc.deps.scope>
    <parquet.deps.scope>compile</parquet.deps.scope>
    <parquet.test.deps.scope>test</parquet.test.deps.scope>

    <!--
      Overridable test home. So that you can call individual pom files directly without
      things breaking.
    -->
    <spark.test.home>${session.executionRootDirectory}</spark.test.home>

    <CodeCacheSize>512m</CodeCacheSize>
  </properties>

完毕。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐